
Static Source Code Analysis Tools
and their Application to the

Detection of Plagiarism in Java Programs

James Hamilton

Presentation Outline

Program Transformation and Static Analysis

Evaluation of Static Analysis Tools

Plagiarism Detection

Conclusion and Further Work

Program Transformation
Program transformation is the act of changing one

program into another.

Static Analysis

Static analysis involves analysing program code
without executing it

For example counting how many variables are
declared in a program

4 Variables

if(args[0].equals(“hello”)) {

}

Tools

ANTLR
JavaCC
javac / Java Compiler API
Eclipse JDT
TXL

Tool: ANTLR

Parser generator which outputs a parser in Java
or other languages

Takes a grammar defining a language as input
Definitive ANTLR book is very useful
Grammar download doesn't include clases like

JavaCC
Two Java 1.5 grammars

Tool: JavaCC

Parser generator which outputs a Java parser
Takes a grammar defining a language as input
Grammar is very untidy
Lacks documentation
Download includes a complete Java Grammar

with AST classes

Tool: javac / Java Compiler API

Written in Java by Sun Microsystems
In 2006, Bruce Eckel found the Eclipse Compiler

was more accurate than javac
Not designed for Static Analysis
Hard to convert for our purpose
Internal classes aren't documented and liable to

change

Tool: Eclipse JDT

Package for parsing, compiling, analysing and
transformation Java source.

Basis of the Eclipse IDE
Accurate implementation
No need for grammars
Lack of documentation especially for tree re-

writing
But easy to understand

Tool: TXL

functional language, very different from the other
tools – doesn't produce a parser

A lot of documentation is available from the
website

The Java 1.5 grammar had an error
Harder for to use

Tool Conclusion

Eclipse is chosen as the best tool for our purpose.
Eclipse IDE is also very good.
TXL is very different from the other tools.
javac, JavaCC, Eclipse visitors all very similar
For parsing languages other than Java ANTLR

would be the best choice.

A plagiarism detector will served as a test to try
Eclipse with a larger static analysis task

Plagiarism Detection

Detecting the similarity between Java source
code pairs in sets of student's Java
assignments

Involves static analysis of the Java programs

Assignment of a similarity value between program
pairs

Plagiarism Techniques

Plagiarism Techniques
changing identifier names

Plagiarism Techniques
adding comments

Plagiarism Techniques
restructuring

Plagiarism Techniques
negating if constructs

Plagiarism as Code Obfuscation

Code obfuscation is the transformation of source code in such a
way that makes it unintelligible to human readers of the code
and reverse engineering tools, such as program slicing tools

Plagiarism can be view as a form of code obfuscation –
students obfuscate code in simple ways to avoid copied code
being detected as plagiarised.

Collberg et al used code obfuscation tools as tools for
plagiarising with several experiments to test MOSS with
submissions plagiarised automatically with the SANDMARK
framework.

Example of Code Obfuscation

A Plagiarism Detection Technique
AST Comparison

A Plagiarism Detection Technique
AST Node counting

The Plagiarism Detector

Empirical Study

8 first year Java assignments with between 13
and 30 submissions for each

'maze' assignment chosen randomly for manual
checking finding 16 plagiarised pairs

Maze Set Results

19 pairs detected as plagiarised
which includes 8 of the 16 known
plagiarised pairs

After analysing the results and
re-checking several more
plagiarised pairs were found

Some false-positives

Maze Set Results
Extract from P

6
 and P

11

Maze Set Results
Extract from P

3
 and P

10

Maze Set Results
Extract from P

16
 and P

18

Die Set Results

Age Set Results

Guess Set Results

Guess Set Results
Extract from P

4
 and P

7

Conclusion

Eclipse was found to be a good tool for static
analysis.

Implementation of a plagiarism detector was a
good test of the abilities of Eclipse for this.

The plagiarism detector was not the best but it did
find several plagiarised pairs.

Further Work

Further work with Eclipse for static analysis and also
program transformations.

Evaluate extra tools such as Stratego.

Code obfuscator which outputs plagiarised programs to
be used for testing a plagiarism detector (a good test
for Eclipse's program transformation abilities).

Implementation of better program similarity algorithms for
the plagiarism detector.

Questions?

