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Abstract—Software metrics are widely used to quantify soft-
ware quality; cohesion is one such metric. It is a measure of
the ‘inter-relatedness’ of code. Sliced-based cohesion metrics use
program slicing to calculate the cohesion of a software module by
using ‘output variables’ as slicing criteria. The definition of ‘out-
put variables’, however, varies in different studies. Unfortunately,
these different definitions lead to different values for themetrics.
We solve this problem by introducing standardised versions
(independent of the ‘output variables’) of previous definitions
of the slice-based metrics.

Our approach computes metrics based only on themaximal
slices in a software module. These can be computed automati-
cally without the need to specify which points contain ‘output
variables’.

We call the slicing criteria that generate maximal slices, in
a software module, ‘crucial points’. Empirical evidence suggests
that crucial points represent points of interest in a program and
strongly correlate with previous definitions of ‘output variables’.
We believe that using crucial points instead of output variables
in slice-based metrics may lead to a more intuitively accurate
measurement of cohesion.

I. I NTRODUCTION

Program metrics have long been used in an attempt to
quantify code quality, for example for use in refactoring [19],
improving software [8] and finding bugs [14]. A software
metric usually assigns some number to a certain quality of a
program. Cohesion metrics [23] attempt to quantify the inter-
relatedness of code in a program module. A highly cohesive
module suggests that it’s statements are highly inter-related
and perform one job; whereas a poorly cohesive module may
be performing multiple jobs. Ideally, program modules should
have a high cohesion corresponding to a modular design
- where each task is separated into individual modules -
which reduces complexity and allows programmers to work
on modules in isolation [18].

There are several cohesion metrics which may defined using
program slicing, or other information about a program module.

Program slicing [22] involves the calculation of a subset
of a program which affects some point of interest, known as
the slicing criteria. Program slicing is used to aid program
understanding and debugging by reducing the size of the

code which has to be examined. For example, computing a
backward slice on line 9 in the sum/product example (listing
2, page 3) results in the slice containing lines{9, 7, 6, 5,
3, 2, 1}. Program slicing can also be used for testing, code
verification, restructuring and in the calculation of program
metrics.

A. Slice-Based Cohesion Metrics

Sliced-based cohesion metrics attempt to determine the co-
hesiveness of a program module by calculating the intersection
of slices. Using slices to calculate cohesion metrics workswell
due to the relatedness definition of cohesion. If statementsin a
module are related it is likely that their slices will share many
statements. On the other hand, if there are multiple tasks taking
place in a module it is likely that the intersection will be small
or empty.

Weiser [22] defined three metrics related to cohesion, which
have been further refined and expanded by others [7, 9, 12, 13]:

tightness:
the ratio of the size of the slice intersection to the
total module length

mininmum coverage:
the ratio of the smallest slice to the total module
length

coverage:
the ratio of the average slice size to the total module
length

maximum coverage:
the ratio of the largest slice size to the total module
length

overlap:
the average ratio of the intersection of all slices to
slice size

The definition of a program module under consideration
in previous empirical studies [10, 11], and this study, is a
procedure, but could also be, for example, a class, a package,
whole program etc.



II. T HE OUTPUT VARIABLE PROBLEM

The calculation slice-based cohesion metrics poses a prob-
lem: what are the slicing criteria? Previously, the concept
of an ‘output variable’ has been used. The definition of an
‘output variable’ varies between studies; this is a problemfor
replicating or comparing such studies.

Green et al. [5] compared 11 papers which used ‘output
variables’ and came to the conclusion that there are four main
types of ‘output variables’: “the return value of a function;
global variables modified by a fucntion; parameters passed by
reference to, and modified by, a function; and any variables
printed, written to a file, or otherwise output to the external
environment” [5]. Most of the previous studies in the area
of slice-based metrics have used CodeSurfer [4] which works
with C programs. The last category, according to Green et al.,
is the most difficult to capture with CodeSurfer (as it is the
most difficult to define).

Cohesion is a measure of how strongly-related the state-
ments within a program module are. Imagine a million print
statements of the form in listing 1 where we are printing the
result of a function call which has a side-effect that changes
the value of x depending on it’s previous value. Intuitively,
the example in listing 1 is very cohesive because each such
statement is dependent on all the previous statements in the
sequence.

i n t f ( i n t k ) {
x = k + x ;
re tu rn x ;

}

vo id main ( ) {
p r i n t ( f ( 0 ) + x ) ;
p r i n t ( f ( 1 ) + x ) ;
. . .
p r i n t ( f (1000000) + x ) ;

}

Listing 1. extreme example

The main problem with computing slice-based metrics is de-
ciding which slices to include in the calculations. If we wanted
to compute slice-based cohesion metrics for the example in
listing 1 previous studies would have chosen the points where
variables were output as the slice points. In this case every
line in the main method, as x is printed on every line.

If we slice at each print statement in order to compute the
various metrics we will end up with very extreme values. The
tightness will be approximately 0, mincoverage 0, coverage
0.5, maxcoverage 1.

This is an example where maximal slices give use exactly
what we want because slicing on the last line will give a
maximal slice; resulting in a tightness of 1. It could also
happen that there are no ‘output variables’, according to some
definition, within a module; but using maximal slices every
module has at least one maximal slice. Maximal slices cope
with extreme cases but also cope with sensible cases as well.

It turns out that the values of the metrics are highly sensitive
to the choice of slices used in their computation. Many authors

have grappled with the problem of which slices to include in
order to come up with meaningful values for the metrics. We
feel that the choices appear somewhat arbitrary and are in
some sense trying to second-guess what the slices of interest
are.

The aim of this paper is to get around this problem by giving
a definition that is language independent, which gives sensible
values for these metrics without having to make arbitrary
decisions about which slices to include. We solve the problem
of the varying definitions of ‘output variable’ in this paper
by defining slice-based cohesion metrics based on maximal
slices.

III. M AXIMAL SLICES

We propose the use of maximal slices as the basis of the
definition of slice-based cohesion metrics. In our definition
there is no need to define the concept of an ‘output variable’
which allows us to provide a standard definition of slice-based
cohesion metrics.

In this section we think of a moduleM as the set containing
the statements in the module, for example, we write|M | to
represent the number of statements in a module.

Definition 1 (The Set of all Slices in a Module):Given a
moduleM we define Slices(M) to be the set of all slices
of M .

Definition 2 (Maximal Slice):A maximal slice is a slice
that is not a subset of any other slice.

Definition 3 (The Set of all Maximal Slices):Given a
module M we define maxSlices(M) to be the set of all
maximal slices ofM . Formally,

S ∈ maxSlices(M) ⇐⇒



















S ∈ Slices(M)

and

∀k ∈ Slices(M),

S ⊆ k =⇒ S = k.

Definition 4 (Crucial Point): A crucial point is slicing a
criterion which produces a maximal slice.

Definition 5 (The Intersection of all Maximal Slices):
Given a moduleM we writeI(M) for the intersection of all
maximal slices. Formally,

I(M) =
⋂

S∈maxSlices(M)

S

Definition 6 (Tightness):The tightness is the ratio of the
intersection of all maximal slices to the size of the module.The
tightness of a moduleM is defined by the following formula:

tightness(M) =
|I(M)|

|M |



Definition 7 (Minimum Coverage):The minimum cover-
age is the ratio of size of the smallest maximal slice to the
size of the module. The minimum coverage of a moduleM

is defined by the following formula:

mincoverage(M) =
min{|S| : S ∈ maxSlices(M)}

|M |

Definition 8 (Coverage):The coverage is the ratio of the
average maximal slice to the size of the module. The coverage
of a moduleM is defined by the following formula:

coverage(M) =

∑

S∈maxSlices(M)

|S|

|M ||maxSlices(M)|

Definition 9 (Maximum Coverage):The maximum cover-
age is the ratio of size of the largest maximal slice to the
size of the module. The maximum coverage of a moduleM

is defined by the following formula:

maxcoverage(M) =
max{|S| : S ∈ maxSlices(M)}

|M |

Definition 10 (Overlap):The overlap is the average ratio of
the intersection of all maximal slices to slice size. The overlap
of a moduleM is defined by the following formula:

overlap(M) =

∑

S∈maxSlices(M)

|I(M)|

|S|

|maxSlices(M)|

We believe that maximal slices capture the most interesting
parts of a program; previous studies have attempted to gather
the same useful information by selecting slicing criteria.Slice-
based cohesion metrics slices are calculated by using a set of
slices - the ‘output variables’ are not important, the slices are.
If a slice is maximal it would suggest that the statements in
that slice perform one task; whereas a slice that is a subset of
another slice could be thought of as performing a sub-task of
a larger task.

Disjoint maximal slices would suggest that the set of
statements in each slice are performing completely separate
tasks; for example, if we calculate maximal slices for a jar file
containing multiple class files we may find completely disjoint
maximal slices if each class is an unrelated program. Ideally,
the intersection of maximal slices of a program method should
be large, corresponding to a highly inter-related set of program
statements. However, if we are considering Java classes or
packages we would consider a smaller intersection between
them good, corresponding to the modularity of object-oriented
programming.

In order to calculate the values of the slice-based cohesion
metrics, backward slices are computed for each statement ina
module, starting with the last statement. Maximal slices are
computed from the set of slices and used to calculate the
metrics.

For example, there are 2 maximal slices for listing 2 -
{9, 7, 6, 5, 3, 2, 1} and {8, 7, 6, 4, 3, 2, 0}; these are the only
slices that are not subsets of other slices. The crucial points
are lines 8 and 9 as these give the maximal slices. Notice
that the crucial pointscontain ‘output variables’(i.e. they are
variables printed to the console in these lines). The lengthof
the module is10 and the intersection of the maximal slices is
{7, 6, 3, 2}, so the size of the intersection is4. The smallest
and largest maximal slices are both7.

0 : sum = 0 ;
1 : p r o d u c t = 0 ;
2 : i = 0 ;
3 : whi le ( i < 10) {
4 : sum = sum + i ;
5 : p r o d u c t = p r o d u c t∗ i ;
6 : i = i + 1 ;
7 : }
8 : p r i n t sum
9: p r i n t p r o d u c t

Listing 2. sum/product example - psuedocode

Now, using our definitions we can calculate cohesion met-
rics for this example:

tightness(example) =
4

10

mincoverage(example) =
7

10

coverage(example) =
7 + 7

10× 2
=

7

10

maxcoverage(example) =
7

10

overlap(example) =
4
7 + 4

7

2
=

4

7

These metrics involve taking the intersections of slices
so including small slices in our set will necessarily lead to
small values of these metrics. If slice points are arbitrarily
chosen to calculate metrics and it happens that very small
slices are included then, when averaged over the program,
all large programs will have, for example small tightness and
small overlap - tightness and overlap are proportional to the
intersection.

Maximal slices are special because any code that occurs
in a maximal slice cannot affect code outside a maximal
slice; this guarantees that “all points of interest” that may
be affected by the slice will be included in the slice. The
pleasing “closed property” of maximal slices make them an
ideal choice for computing slice-based metrics, removing the
need for previous arbitrary choices. Maximal slices are slices
which have “maximal effect”.

IV. EMPIRICAL STUDY

We have used the Indus Java program slicer [15, 16] to
perform an empirical study of 378 small Java programs taken
from SourceForge.net. Indus performs analysis and slicingon
the Jimple [20] intermediate-representation provided by the
Soot [21] framework. Jimple is a fully typed three-address
code representation of Java/Java bytecode.



Many of the crucial points correspond to the concept of
‘output variable’ as used in previous studies – the difference
being that we did not have to specify what an ‘output variable’
is to find them.

Table I shows a selection of crucial point statement types
found in our study of 378 Java programs. We have chosen the
listed types by considering, intuitively, the types of statements
in Java that might correspond to the ‘output variables’ in
previous studies. The types listed correspond to approximately
70% of the overall statements designated as crucial points.

Nearly 100% of Java Writer/Stream method calls (print(ln),
close, flush, write) were designated crucial points. These
methods cause some kind of output and therefore are the most
obvious methods to be in definitions of ‘output variables’.

Thread related, System.exit() and Runtime.exec() method
calls affect the environment outside of the module and should
therefore be considered ‘output variables’; nearly all of these
were found to be crucial points.

A high percentage of modified instance variables (fields)
were designated as crucial points. These include both the
current object and other objects used within a method; e.g.
“this.foo = 1”, “obj.foo = 2”. Java usespass-by-valuewhere
a value passed as a parameter is a reference to an object
therefore modified instance variables of other objects, used in
a method, are considered crucial points. Similarly a high per-
centage of class variables (static fields) have been designated
crucial points.

Another of the types of ‘output variable’ in previous studies
were return values. Our study found that 73.46% of return
statements returning variables were found to be crucial points.

The “or similar” part of “printed or similar” type of ‘output
variables’ is the most difficult to define. We found that 72.17%
of method invocations with void return types and 1 or more
parameters were considered crucial points; such a method is
likely to cause some external changes, such as print or modify
objects, because it doesn’t return any value. A method that
returns a value is less likely to have side-effects. As a more
concrete example, 97.73% of ‘setters’ were found to be crucial
points compared to only 23.44% of ‘getters’1.

We have shown examples which coincide with previous
definitions of output variables. However, it is not important
using our technique to determine whether or not a specific
method call is or is not an output method. The advantage of
our technique is that we use maximal slices to determine the
interesting parts of a program for us.

Each method will have at least 1 crucial point and the
average number of crucial points per method, in our study,
is 4.76. The average length of a method is 13.57 Jimple
statements. Java programs, compared with other languages
such as C, contain a high number of methods with a small
length (e.g.< 3 Jimple statements) due to the use of ‘getters’
and ‘setters’ in object-oriented programming, and default
constructors. This skews results when averaging slice-based

1We consider a ‘setter’ to be of the form ‘void
set[alphanumeric]*(parameter+)’ and a ‘getter’ ‘nonvoid
get[alphanumeric]*()’

Type CPs !CPs
*Stream print(ln) 100% 0%
*Writer print(ln) 100% 0%
*Stream close() 100% 0%
*Writer close() 100% 0%
*Stream flush() 100% 0%
*Writer flush() 100% 0%

*Stream write() 100% 0%
*Writer write() 99.7% 0.3%
printStackTrace 100% 0%

Thread start 100% 0%
Thread stop 100% 0%

Thread sleep 100% 0%
Thread currentThread 100% 0%

System.exit() 100% 0%
Runtime.exec() 80% 20%

modified instance vars (this) 93.21% 6.79%
modified instance vars (others) 89.5% 10.5%

modified class vars (same class) 80.28% 19.72%
modified class vars (other class) 62.16% 37.84%

returns (with vars) 73.46% 26.54%
returns (with constants) 72.8% 27.2%

Reflect invoke 100% 0%
*Exception initialisers 96.58% 3.42%

void method invocations 72.17% 27.83%

setter invocations 97.73% 2.27%
getter invocations 23.44% 76.56%

TABLE I
SELECTED JAVA STATEMENTS THAT ARE/ARE NOT CRUCIAL POINTS

cohesion metrics of methods in a program (as previous studies
have done) and makes it hard to compare the metrics to other
languages. Our study revealed that 38% of methods contain
fewer than 3 Jimple statements.

V. CONCLUSION AND FUTURE WORK

We have used maximal slices to redefine slice-based co-
hesion metrics without the use of the previously ambiguous
concept of ‘output variables’. This standard definition is an
improvement because it will allow further studies in this area
to be more easily comparable.

The use of maximal slices is appropriate because we believe
that a maximal slice captures an interesting part of a program;
any code that occurs in a maximal slice cannot affect code
outside the maximal slice. Intersecting maximal slices repre-
sent inter-related program statements, while disjoint maximal
slices suggest multiple tasks are being performed. For future
work we will define new metrics in terms of maximal slices
which we believe will compute slice-based cohesion metrics
more intuitively, especially in the context of object-oriented
programming.

A fruitful avenue of research that we are now investigating
is representing a program module as a graph of slices. The
visualisation of these graphs may give a better intuitive insight
into the cohesive properties of programs rather than a simple
value. A further advantage is that it gives the opportunity of
defining metrics in terms of standard graph metrics, such as
communities [1].



These visualisation might also be useful for locating soft-
ware watermarks [3, 6] or malware [2, 17] within programs
- allowing us to define better software watermarks, or easily
remove malware.

REFERENCES

[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lam-
biotte, and Etienne Lefebvre. Fast unfolding of commu-
nities in large networks.Journal of Statistical Mechan-
ics: Theory and Experiment, 2008(10):P10008, October
2008. ISSN 1742-5468. doi: 10.1088/1742-5468/2008/
10/P10008.

[2] Mihai Christodorescu and Somesh Jha. Static analysis
of executables to detect malicious patterns. pages 12–
12, Washington, DC, 2003. USENIX Association.

[3] Christian Collberg. Software watermarking: Models and
dynamic embeddings. InProceedings of the 26th ACM
SIGPLAN-SIGACT, January 1999.

[4] GrammaTech, Inc. CodeSurfer, 2011. URL http://www.
grammatech.com/.

[5] Pam Green, Peter C R Lane, Austen Rainer, and
S Scholz. An Introduction to Slice-Based Cohesion and
Coupling Metrics. Technical Report 488, University of
Hertfordshire, 2009.

[6] James Hamilton and Sebastian Danicic. A Survey of
Static Software Watermarking. InProceedings of the
World Congress on Internet Security 2011, pages 114–
121, London, 2011. IEEE.

[7] M. Harman, S. Danicic, Y. Sivagurunathan, and B. Jones.
Cohesion Metrics, 1995.

[8] Michele Lanza, Radu Marinescu, and Stéphane Ducasse.
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