
Artificial Ants: Simulating Ant Behaviour and
Investigating Applications In Computing

BSc Computer Science Project

James Hamilton
May 2007

Goldsmiths College, University of London

Supervised by Dr Sebastian Danicic

Ants are excellent route finders, with the ability to find the shortest
path between their nest and a food source, by using pheromone trail
clues to organize themselves collectively. By applying behaviour
observed in ant colonies to the field of computing, these ant-based
techniques can provide a base for network routing algorithms, as
well as algorithms to solve graph problems such as the travelling
salesman problem. This report introduces ant behaviour by the
implementation of an ant simulation, and finally applies lessons
learned from the simulation to graph and network routing problems.

Table of Contents
 Introduction...1

Summary of Application Development..2
Ant World Simulator..2
Ant World Graph..2

 Background...3
Ant Behaviour...3

The double bridge experiment...4
Swarm Intelligence...9

Ant Colony Optimization..9
Peer-to-Peer Networking..9
Ad-Hoc Networking...9

 Part 1: Simulating Ant Behaviour..11
Ant World..11
Ant Movement..12
Proposed Software Architecture...13

Technical Considerations...13
Ant World Simulator...14

Version 1..14
Version 2..15
Version 3..16
Version 4..17
Version 5..19
Versions 6 and 7...21
Version 8..22

The Dancing Ant Problem..24
Version 9..25

Stop Ants Dancing..26
Version 9.1...28
Version 10..29
Version 11...30

The Split Trail Problem...32
The Bouncing Ant Problem..33

Version 12..34
Solving The Split Trail and Bouncing Ant Problems...34

Version 13..37
Version 14..38

Time for ants to collect 29 pieces of food..38
Time for ants to collect 81 pieces of food..38

Version 15..40
Time for ants to collect 29 pieces of food..40

Version 15.1...42
Time for ants to collect 29 pieces of food..42

Version 16..44
Version 17.1...46

Ant Maze...48
Conclusion to Part 1..49
Improvements and Future Work...50

 Part 2: Applications of Ant Behaviour...51
Why ant algorithms?...52
Proposed Software Architecture...53

Technical Considerations...53
Ant Graph World ..54

Version 1..54
The implementation..54

Version 2..55
Version 3..56
Version 4..57

A short description of classes...58
Ant..58
Food..58
Pheromone..58
Node...58
Nest...58
Edge..58
GraphComponent...59
Graph..59
GraphJFrame..59

The Algorithm...60
Test Graphs...62

Double Bridge Graph...62
The Default Test Graph..63

Loop Problems..64
Conclusion to Part 2..65
Improvements and Future Work...66

Two Phase Algorithm...66
Route Discovery..66
Message delivery...67

 Conclusion..68
 Bibliography...69

Appendix. A Accompanying Software...70
Appendix. B Source Code..71

Ant World Simulator..71
Ant Graph World...109

Appendix. C Weekly Diary Reports...142
First meeting with Sebastian - Friday 13/10/2006, 02:30 PM..................142
Progress - Friday 20/10/2006, 02:00 PM..142
Meeting with Sebastian - Friday 27/10/2006, 02:00 PM..........................142
Progress - Friday 3/11/2006, 02:00 PM..142
A Little Progress - Friday 17/11/2006, 02:00 PM.....................................143
Ants Get Stuck! - Friday 24/11/2006, 02:00 PM......................................143
Meeting - Friday 1/12/2006, 02:00 PM...143
Some problems solved - Thursday 7/12/2006, 02:00 PM........................143
Last Meeting of Term 1 - Friday 15/12/2006, 02:00 PM..........................144
Not much progress - Thursday 8/02/2007, 03:00 PM..............................144
Project Direction - Thursday 1/03/2007, 03:00 PM..................................144
Ants 2.0 - Thursday 8/03/2007, 03:10 PM..144
Problems with Ants 2.0 - Friday 16/03/2007, 03:00 PM..........................145
Last Meeting - Thursday 26/04/2007, 02:00 PM......................................145

Appendix. D Project Description Report...146

Introduction
Researchers have been looking into the use of Artificial
Ants to improve network communications for sometime,
and the results have shown that ant foraging behaviour
used as a basis for modelling network traversal
algorithms are very efficient [1]. Ant based algorithms
can also be used to introduce anonymity into peer-to-
peer networks, by replacing the need for global routing
tables with local routing clues in the form of pheromone
trails [2]. Another application is ad-hoc networks [3],
where hosts leave and join the network sporadically –
ants can help here too: they are good at finding new
routes if a route has become blocked, or reacting to a
new, closer food source.

Nature has already solved many problems that these researchers are trying to solve and/or improve.
Ants are very good at finding the shortest distance between their nest and a food source, and are able
to work together efficiently. From the point of view of swarm intelligence ants individually are very
stupid but an intelligence emerges when they start working together.

So how are ants good at working together to find short paths to food, and how can this be applied to
the field of computing?

This report is divided into two parts. Part one attempts to explain the notion of ant behaviour in order
to express how ants find shortest paths, and demonstrates this via the use of a graphical ant
simulation. Part two uses the knowledge gained from part one and applies this to an area of
computing, namely graph routing, by the introduction of shortest path problems in graph theory and
applying the previously demonstrated ant behaviour to finding these paths.

1

Figure 1: Meat Eater Ant Feeding on Honey (from
Wikimedia Commons)

Summary of Application Development

Two applications have been developed as a result of this report. Each application was developed
incrementally, and every version is documented in this report. Problems and developments and
changes are discussed for each version.

Ant World Simulator

The Ant World Simulator aims to simulate ant behaviour and allow users to observe the emergent
intelligence of the ants.

Version 1 – Implements basic application structure, random ant movement and food.
Version 2 - Introduces a nest, ants pick up food and randomly find their way back to the nest.
Version 3 – Same as version 2 but different layout of food and obstacles.
Version 4 – Ants lay pheromone trails while they are carrying food.
Version 5 – Introduces food strengths and a threaded nest.
Version 6 – Introduces the FoodCluster class, and slider control for food strength.
Version 7 – Bug fix for version 6.
Version 8 – Removes the FoodCluster class, food strength calculated by individual grid squares.
Version 9 – Ants 'know' where their nest is. They find food and return it to the nest. Food strength
calculations are changed to be more efficient.
Version 9.1 – Fixes 3 bugs from version 9.
Version 10 – Introduces an information dialog.
Version 11 – Re-introduces pheromone trails, ants follow the trails with some success.
Version 12 – Changes the way ants move, to solve problems discovered in version 11.
Version 13 – Unsuccessful attempt to create a smoother animation. Roll back to version 12.
Version 14 – Includes a re-written move algorithm, and ants follow a pheromone from the nest to the
food slightly better than version 12. Includes two experiments.
Version 15 – Implements a directional pheromone trail, ignores pheromone strength. Includes
experiment.
Version 15.1 – Uses directional pheromone trail, with strength. Includes experiment.
Version 16 – Takes a different approach to pheromone trails.

Ant World Graph

Ant World Graph simulates the Ant World using a graph structure. This application attempts to
demonstrate how ants based algorithms can be used to solve shortest path problems on graphs, and
how this can be applied to the field of computing – such as peer-to-peer networking.

Version 1 – Implements a basic graph data structure and GUI for end-user to create a graph.
Version 2 – Enhanced GUI.
Version 3 – Improved underlying GUI code.
Version 4 – Implements ant algorithms for finding the shortest distance between nest and food nodes.

2

Background

Ant Behaviour

Individually ants are stupid. But ants show
emergent intelligence when they work
together. it is this collective intelligence that
is so interesting to computer scientists. Many
stupid ants can find the shortest path between
their nest and a food source – computer
scientists are now applying these ant based
techniques to computer problems.

Each individual ant follows some simple
rules: they leave the nest with a mission to
find food, or a pheromone trail that leads to
food. If they find food without the help of a
trail, they will follow their own route back to
the nest. Some species use visual clues [4],
others use geometrical clues in their trails [5],
but they know how to return to their nest.
When ever an ant is carrying food its new mission is to return to the nest and lay a trail for other ants
to follow. Ants always follow the strongest trails, resulting in positive feedback – a trail is
strengthened, so more ants follow it, and then the more ants following it strengthen it more.

3

Figure 2: Ants at Work (from Wikimedia Commons)

The double bridge experiment

The double bridge experiment [6] is a simple way to demonstrate the shortest path finding ability of
ants. For this experiment we will have two ants, a and b, whose task it is to find food and return it to
the nest. There are two routes for these ants to take to the food, one being double the length of the
other. Ants do not like travelling a long distance to find food, they'd rather find the closest food
source, lets see how they do that.

Figure 4 shows the initial set-up of the experiment, where the top route is shorter (route A) than the
bottom route (route B). Ants a and b are going to set off at the same time, one will take the top and the
other the bottom route.

Figure 4 shows the state of the experiment at T = 1. Ant a is already half way towards the food while
ant b is only ¼ of the way there.

4

Figure 3: The Double Bridge Experiment - Initial Setup

Figure 4: Double Bridge Experiment, Time = 1

At T=3 ant a has started returning to the nest via its route with food (it has 'remembered' its route),
while ant b has still not reached the food being only ¾ of the way. Ant a lays a pheromone trail behind
itself, to mark its path from the food to the nest.

Eventually ant b finds the food at T=4. When it gets to the food, it discovers the pheromone trail left
by ant a. Ant b now has two choices to return to the nest, one route with pheromone and one without.
An ant will always prefer the route marked with pheromone, and will therefore follow ant a's route
back to the nest. Ant a will also follow the top route back to the food again for the same reason.

5

Figure 6: Double Bridge Experiment, Time = 4

Figure 5: Double Bridge Experiment, Time = 3

Ants a and b will now follow only the top route as it is the one with pheromone. This results in
positive feedback where the ants follow the stronger trail, making it stronger still. If an ant c now
leaves the nest it will also follow the trail towards the food. When the food is depleted ants will no
longer lay a pheromone, and the trail will eventually evaporate.

The probability that an ant will choose a given path is a function of pheromone strength. If there is no
pheromone on either path then the selection is made randomly.

It is entirely possible that all the ants randomly choose the longer route, but at the start both routes
have equal probability of being chosen and we can assume that half the ants will choose route A and
half route B.

6

Figure 7: Double Bridge Experiment, Time = 9

Ants are also very good at adapting to changes in their environment [7] such as a route becoming
obstructed, for example if route A suddenly became blocked.

Figure 8 depicts route A being blocked by some obstacle and both ants a and b at the nest ready to set
out to find more food. They will both choose route A which has been blocked due to the high
concentration of pheromone. The will find themselves confronted by a dead-end (Figure 9), and will
turn around to return to the nest, where they will again follow route A due to the pheromone. But the
pheromone is not being re-inforced anymore since no ants carrying food at walking the route.

7

Figure 9: Double Bridge Experiment, Ants a and b at a dead-end

Figure 8: Double Bridge Experiment, Route Blocked

By T=6 the pheromone has evaporated leaving both routes with equal chance of being used to find the
food. Again we can assume that one travels route A and the other travels route B. The ant travelling
route A will find a dead-end whereas the ant travelling route B will find the food, and lay a trail back
to the nest. Both ants will then eventually follow route B. (Ant a may also choose route B before and
b returns due to the longer distance b will have to travel).

8

Figure 10: Pheromone has evaporated in the blocked Double Bridge Experiment.

Swarm Intelligence

Swarm intelligence (SI) is an artificial intelligence technique based around the study of
collective behaviour in decentralized, self-organized systems.

Wikipedia [8]

Swarm Intelligence involves many simple separate objects working as one, each object on its own
would be quite useless, but when the swarm works together they can solve seemingly complex
problems. Each object, or agent, interacts with its local neighbours and environment and complex
behaviours emerge. SI can be found in nature, for example ants, birds and fish.

Ant Colony Optimization

Ant Colony Optimization (ACO) is a sub-field of Swarm Intelligence that involves using behaviour
observed in ants applied to optimization problems in computing. This field was created by Marco
Dorigo, whose work will be referenced in this report.

Applications of ant behaviour include shortest path and travelling salesman graph problems. These
can also lead to optimization of networking routing, and dynamic network routing based on network
load in applications such as telecommunications.

Peer-to-Peer Networking

Ant based routing algorithms are becoming more widely spread in there uses. Peer-to-peer networking
is a good example of a field where ant algorithms are becoming useful. With the growing number of
users of peer-to-peer networks, many people are wanting more privacy. Mainstream peer-to-peer
applications establish a direct connection between two users exchanging parts of a file, which means
they must know each others IP address. An authoritative body such as the RIAA are using IP
addresses to sue file uploaders, therefore more people are wanting anonymous ways of sending data
via peer-to-peer applications. Applications such as MUTE are attempting to address the privacy issue
by providing routing information throughout the network in the form of 'pheromone' clues. Data is
routed around the network via the use of these clues, and every node only knows its immediate
neighbours, and also cannot determine which node a message has come from or which node it is
going to.

Ad-Hoc Networking

The same ideas used for peer-to-peer networking can be used for ad-hoc network [9], for example in a
wireless network. Ants are good at finding new routes if other routes have become blocked, for
example [7]. In an ad-hoc network computers can join or leave the network at any time, there routes
become blocked and new routes become available.

9

Part 1: Simulating Ant Behaviour

Ant World

The first part of this report concerns simulating the behaviour of ants in order to show how they
interact and work collectively.

The ants will live in a grid where each square will contain either the nest, an ant, a piece of food, an
obstacle and/or pheromone. Figure 11 shows an example ant world which contains a nest, two ants,
four obstacles, and three pieces of food.

11

Figure 11: Example 10 x 10 Ant World

Ant Movement

Using a grid to represent the ant world means that an ant will have 8 directions to move in.

Ants will select the square that is best for them based on a algorithm that will take into account food,
pheromone, other ants and obstacles.

If all surrounding grid squares are empty then the ant should continue in the same direction. If the
only objects within the grid squares are obstacles then these shouldn't affect the ant, unless there is an
obstacle in the square in front of it. So if the ant encounters an obstacle in the direction of its next
move it should turn around and move the other way (the same goes for another ant – which should be
treated as an obstacle). Figures 13, 14 and 15 show examples of the the expected movement of a
single ant.

12

Figure 13: Example: The grid
squares contain different strengths of
pheromone with 5 being the
strongest. The ant should choose
square 5.

Figure 12: Directions an ant
can move

Figure 14: Example: The grid
squares 3, 4 and 5 again contain
pheromone, but squares 6 and 7
contain food. The ant should
choose either of these.

Figure 15: Example: The grid
squares 1, 8 and 7 contain an
obstacle. The ant should choose
grid square 4 to move away from
it.

Proposed Software Architecture

Using a Object-Oriented approach the Ant World will consist of GridSquare, Ant, Food, Nest, and
Obstacle objects. Obstacles, Ants and Food will be subclasses of MyObject which will control the
drawing of these.

Technical Considerations

Each ant will be threaded so that they can act individually. Each ant should follow some basic rules
which govern its behaviour and should not pass messages to any other ants. This simple behaviour of
each ant is expected to produce emergent behaviour, when ants interact.

A GridSquare should be capable of holding either an ant, food, or obstacle. It is proposed that each of
these derive from a parent class MyObject. A GridSquare will then hold a MyObject object. Each grid
square will also have a pheromone strength.

The MyObject class will be in charge of drawing, and the subclasses will take care of the specialised
task of ants, food and obstacles.

A Grid object will contain a multidimensional array of GridSquare objects, that represent the Ant
World. A Grid object will be a singleton class as only one of these is (and should) be needed. It will
contain a multidimensional array of Grid objects.

13

Figure 16: Ant World Simulator Proposed Class Diagram

Ant World Simulator

Version 1

Version 1 is a very simple starting point, which adds the basic
ants,food and gridsquares.

Ants walk around moving between GridSquares. They begin
at a random gridsquare facing in a random direction and
move in the same direction until they hit an object (an ant is
an object in this verison - food is ignored) and the turn right.

If they hit the edge of the Grid they turn in the opposite
direction.

14

Figure 17: Version 1 of the Ant Simulator

nextGridSquare = gridSquareInCurrentDirection

if(nextGridSquare is null) {
change direction to opposite direction
(wait)

}else if(nextGridSquare is Empty) {
move to it

}else if(nextGridSquare contains Food) {
pick up food
move to it

}else{
change direction clockwise
(wait)

}

Listing 1: Version 1 movement Algorithm (Note: there is a bug (other than the ants!) in this version, and ants ignore the
food instead of picking it up as the algorithm suggests.)

Version 2

In this version the ants start in a nest. They exit the next
in a random direction. 1/8th of the ants tend to go in
each direction, spreading outward.

If an ant encounters food it picks it up and continues
moving, but now treats other food as an obstacle. A
distinction is made between ants carrying food and
those that are looking for food, by colouring the
carrying ants yellow.

If an ant happens to find the nest it will drop its food
and continue searching for more. I say 'happens'
because each ant in this version has no idea where their
nest is, they are walking around randomly even when
carrying food.

15

Figure 18: Version 2 of the Ant Simulator

nextGridSquare = gridSquareInCurrentDirection

if(nextGridSquare is null) {
change direction to opposite direction
(wait)

}else if(nextGridSquare contains Food && not carrying Food) {
pick up food
move to it

}else if(nextGridSquare is Nest && carrying Food) {
move to it
drop food

}else if(nextGridSquare is Empty) {
move to it

}else{
change direction clockwise
(wait)

}

Listing 2: Version 2 movement algorithm

Version 3

Version 3 is exactly the same as 2, but with a different
obstacle and food layout.

16

Figure 19: Version 3 - Different layout

Version 4

Version 4 is the first version to introduce pheromone trails.
Ants behave exactly as in version 3. bit when they are
carrying food they lay a trail behind them.

Each time an ant enters a grid square while carrying food it
increases that grid squares pheromone strength.

Each grid square has its own pheromone object, which acts
as a particle of pheromone left by the ant.

The strength of a pheromone particle is an integer between
0 and 10, where 0 is no pheromone and 10 is the strongest
it can be. 10 is the upper threshold so any further increases
will just keep it at the same level.

Pheromone objects are threaded so they evaporate by
themselves. Every 15 seconds the strength of a particle
decreases by one, when it reaches zero the pheromone

disappears from the grid square.

If the same path is constantly used by ants the trail won't disappear because the strength keeps getting
increased. The colour of a pheromone particle is based on its strength, the stronger it becomes the
lighter the colour becomes.

In this version ants do not yet follow trails that they find,
they just lay a trail behind them while carrying food.

As with the previous version ants do not know where the
nest is, though if they do happen to find it they will drop
their food.

17

Figure 20: Version 4 - First version with
Pheromone trails

Figure 21: Version 4 - Stronger, Longer trails

18

nextGridSquare = gridSquareInCurrentDirection

if(carrying food) {
if(current grid square has pheromone) {

increase pheromone strength by 1
}else{

make new pheromone particle with strength 1
}

}

if(nextGridSquare is null) {
change direction to opposite direction
(wait)

}else if(nextGridSquare contains Food && not carrying Food) {
pick up food
move to it

}else if(nextGridSquare is Nest && carrying Food) {
move to it
drop food

}else if(nextGridSquare is Empty) {
move to it

}else{
change direction clockwise
(wait)

}

Listing 3: Version 4 movement algorithm

Version 5

Version 5 introduces a new paradigm in the use of the
grid square objects, but introducing a method
Vector<GridSquare> getGridSquares(int radius). This is
useful because an ant needs to look at the surrounding
grid squares to make a decision about where to go next.

Other uses of this new method include creating clusters
of food by picking some random gridsquare, and placing
food in a certain radius of that gridsquare.

This version also introduces Food Strength. This is
similar to pheromone and is designed to attract ants
towards the food.

Food strength is calculated for each grid square within a
given radius of a food square, and is inversely
proportional to the distance from the food (see figure
23). The food strengths are
initial set at the beginning of

the program when each cluster of food is added – they would not yet change
if an ant was to remove some food.

This leads to the other problem with this version – the ants dont collect food,
the all move toward the centres of food clusters.

This was the intended result of this version, to set up the radial gridsquare
method and implement food strength. This can be seen to be working as all
the ants move towards centres of the food, which the place where the food
strength will be strongest.

In this version each ant looks at the squares surrounding it, and sorts them
based on food strength value, so the highest is the first. The ant then moves
to this grid square.

The nest is this version is now threaded and in charge of
releasing ants. At the beginning of the program all the
ants are in the nest, and an ant is released every second.
It is remove from the nest's list of ants, and the ants
thread is started so that it starts moving. When an ant
returns to the nest it is re-added to the list of ants, and its
food is removed from it. The ant will then be released
again.

19

Figure 22: Version 5 - Ants moving towards food
and getting trapped.

Figure 23: Food Strength -
4 Squares of Food in the
middle with food strength
spreading outward

Figure 24: Version 5 - More ants getting trapped in
food.

20

if(current grid square is not null) {

if(current grid square contains an Ant) {
(wait)

}else if(current grid square contains food && not carrying food) {
carry food
current direction = opposite direction
(wait)

}else if(current grid square contains food) {
current direction = opposite direction
(wait)

}

sort surrounding squares
if(no food strength) {

move to next grid square in current direction
}else{

move to highest food strength grid square
}

}else{

current direction = opposite direction
move back to previous grid square

}

Listing 4: Version 5 movement algorithm

Versions 6 and 7

Versions 6 and 7 implement a slider control for food
strength radii (version 7 is just a bug fix for version
6 – where food strength radii increased by itself).

Using the slider can demonstrate how far the radius
of a food cluster extends and ants will be attracted to
it as soon as they 'smell' it.

This version also introduces the FoodCluster class,
this class is in charge of a cluster of Food objects,
recalculating their strengths every second. The
FoodCluster class is threaded and every second it
recalculates the strengths for all the squares in a
radius of 5 from the FoodCluster.

After implementing the FoodCluster class it become
apparent that this was a bad idea. A cluster of food
should be made up of separate food particles, but
there is no need to have a class to look after them.

The recalculations every second also use a lot of
processing time and slow the whole program down. There isn't a need for the FoodCluster class
because each grid square could calculate its own food strength. Food strength only needs to be
updated when a piece of food is removed, rather than every second, as ants might not have taken any
food.

The ant movement algorithm is the same in these versions as version 5.

21

Figure 25: Version 7 - With slider control for food
strength radii

Version 8

Version 8 removes the FoodCluster class and food
strength is now based upon each individual food
particle.

Each grid square gets checks whether it is within a
radius of 10 of a piece of food, and if so updates
its food strength accordingly.

Food strength does not get updated when food is
taken. This is because the method for calculating
food strength is very inefficient, and requires too
much processing to be updated each time a piece
of food is taken. Therefore food strength is only
set at the beginning of the program, and does not
change.

The slider was removed due to the changing of the
food strength calculations.

Ants move towards the strongest food strength to
the middle of the food as in the previous versions,

they do not pick up food and return to the nest.

In this version two ants can occupy a grid square at the same time which is not good as it allows all
the ants to move to the same square in the middle of the food.

In previous versions ants would have to check to see if it received a null value when asking for the
next square to check if it had hit an edge.
Obstacles are used in this version to simplify the
edge detection. As ants bounce off of obstacles
already, it was just a matter of placing a border of
obstacles around the edge of the grid – like a
fence.

Another problem encountered is 'The Dancing
Ant Problem' – See section 'The Dancing Ant
Problem'.

22

Figure 26: Version 8 - Ants move toward food

Figure 27: Version 8 - The Dancing Ant Problem

23

if(current grid square is Nest) {
pick a random square from the surrounding squares

}else{
Sort the surrounding squares
foreach(square in surrounding squares) {

if(square is obstacle) {
move to grid square in previous direction

}else{
change direction to direction of new grid square
move to it

}
}

}

Listing 5: Version 8 movement algorithm

The Dancing Ant Problem

The dancing ant problem occurs when an ant's best choice for a next move is a square that it has just
moved from. This can occur when it hits an obstacle, because it hits the obstacle turns around and
moves back again because it is the 'best' choice.

In Figure 29 the ant's (red square) best choice is to move into position 8 because of the pheromone
deposited there.

In Figure 28 the ant has moved into the square with the pheromone but has hit an obstacle (black
squares). My algorithm now tells the ant to turn in the opposite direction. The leads it to the same
state as in Figure 29, and the ant therefore continues the process forever.

24

Figure 29: Dancing Ant
Problem - State 1 Figure 28: Dancing Ant

Problem - State 2

Version 9

Version 9 is a step forward in the sense that ants
finally find food and return it to the nest.

Ants 'know' where their nest, some species use visual
clues [10], others use geometrical clues in their trails
[5], but with all ants they know how to return to their
nest if they are not too far away from it. So in this
version once an ant has picked up a piece of food it
will head straight back towards the nest. It does this
by always moving to the next grid square in the
direction of the nest, until it reaches the nest.

The way food strength is calculated has also been
changed, due to the in-efficient technique used in the
previous version. In this version only grid squares
containing food perform food strength calculations,
compared to the previous version where all grid
squares calculated food strengths every second. This
version sets up the initial food strengths at the
beginning, then when a piece of food is removed

from a grid square, that grid square subtracts strength from the surrounding squares.

A grid square containing food adds food strength to all grid squares within a radius of 15. It does not
recalculate the complete food strength for each surrounding square, just add strength for the one piece
of food contained in the calculator grid square. This technique allows food strength to be built up by
different food particles. When a food particle is removed the grid square removes the same amount of
food strength that it previously added to all the surrounding squares, in order to reduce the food
strength. This can be seen visually in this version, with the food strength slowly fading away as more
food is taken. This technique is far more efficient than in the previous versions and does not need to
be recalculated every second, only when food
concentration changes.

The new food strength technique is not yet perfect. Ants
dance around the outer most edge of the food strength
perimeter once all food in a cluster has been taken. This is
due to a very small amount of food strength being left
behind.

Ants occasionally enter obstacles in this version as well,
due to the obstacle square being the 'best' choice for it to
take which it obviously isn't.

A third problem is that ants aren't treating food as
obstacles when they are carrying food, and therefore they
will walk through food. As each grid square can only
contain one object (ant, food or obstacle) this removes the
food from the square that the ant has walked over.
Because the ant did not pick up the food, the food strength
created by that piece of food are not removed.

25

Figure 31: Version 9 - Ants get stuck at obstacles
between them and the nest because they 'know'
where the nest is and are going in the direction
where the obstacle is.

Figure 30: Version 9 - Ants collecting food.

Stop Ants Dancing

In order to stop the ants dancing when they encounter an obstacle, the movement algorithm now
randomly selects one of the free squares for the ant to move to. This results in a more natural
movement of the ants as before it was a pong-like movement with the ants just bouncing off.

In the actual implementation of this the ants cannot even consider the obstacle squares, they are only
given the free squares to choose a new position.

26

Figure 32: The ant
would randomly choose
either grid square 2, 3, 4,
5, or 6.

27

if(there is no grid square in current direction or it contains an obstacle or it contains an ant) {
move to a square in a random direction

}else if(carrying food and not in nest) {
move to next grid square in the direction of the nest

}else if((surrounding food strength is zero and surrounding squares do not contain food) or carrying food) {
move to next grid square in current direction

}else{
if(any free surrounding square contains food) {

move to it
}else{

sort free surrounding squares by food strength
move to the strongest

}
}

if(current grid square is nest) {
if(carrying food) {

drop it
}

}else if(next grid square contains food and not carrying food) {
pick up food
move to it

}

Listing 6: Version 9 movement algorithm

Version 9.1

Version 9.1 fixes the three main bugs in version 9: ants now treat food as obstacles if they are carrying
food, ants won't randomly move into an obstacle, and most important food strength does not get left
behind.

When remove food strength after removing a piece of food an extra 0.001 is removed to make sure
that there is no extra remaining after all the pieces of food in a cluster are removed.

28

if(next grid square in current direction is not empty) {
move to a square in a random direction

}else if(carrying food and not in nest) {
move to next grid square in the direction of the nest

}else if((surrounding food strength is zero and surrounding squares do not contain food) or carrying food) {
move to next grid square in current direction

}else{
if(any free surrounding square contains food) {

move to it
}else{

sort free surrounding squares by food strength
move to the strongest

}
}

if(no next grid square or (next grid square contains obstacle or ant or (food and carrying food)) {
move to a square in a random direction

}else{
if(current grid square is nest) {

if(carrying food) {
drop it

}
}else if(next grid square contains food and not carrying food) {

pick up food
move to it

}
}

Listing 7: Version 9.1 movement algorithm

Version 10

Version 10 introduces the information dialog, the
show numerically what is happening in the
simulation. Figure 33 shows the graphical
representation and figure 34 shows the numerical
values associated with it, such as the number of
ants carrying food and the number of food
particles collected.

This is implemented using an observer pattern,
where the information dialog observes the ants by
waiting for notifications of events.

It registers itself with each at, and then when an an
does something interesting the ant notifies its
observers.

The rest of the application is the same version 9.1.

29

Figure 33: Version 10 - Ants collecting food.

Figure 34: Version 10 - Information dialog

Version 11

This version implements pheromone trails - although
there are problems with getting ants to follow them.
When a trail splits into other smaller trails the ants
'best' next grid square is the square behind them
because the trial is longer (see 'The Split Trail
Problem'). Also ants get knocked off trails if they
bump into another ant coming in the other direction
(see 'The Bouncing Ant Problem').

Ants sort the grid squares around by pheromone
strength and randomly choose one, with a bias
towards the highest.

A timer has been added to the information dialog in
this version. It takes around the same time for ants to
collect the food with or without pheromone trails.
Some ants do follow the trail, but must just happen
to find the food randomly - the same as with no
trails.

Figure 35 shows some ants following one of the pheromone trails, showing the partial success of this
version. Ants that have left the trail or left the nest before the trail was laid can also be seen moving
around in other places. Some ants do not follow the pheromone as they leave the nest as they should
do.

30

Figure 35: Version 11 - Some ants following pheromone
trails

31

if(next grid square in current direction is not empty) {
move to a square in a random direction

}else if(carrying food and not in nest) {
move to next grid square in the direction of the nest

}else if((surrounding food strength is zero and surrounding squares do not contain food) or carrying food) {
move to next grid square in current direction

}else{
if(any free surrounding square contains food) {

move to it
}else{

sort free surrounding squares by food strength
move to the strongest

}
}

if(no next grid square or (next grid square contains obstacle or ant or (food and carrying food)) {
move to a square in a random direction

}else{
if(current grid square is nest) {

if(carrying food) {
drop it

}
}else if(next grid square contains food and not carrying food) {

pick up food
move to it

}
}

Listing 8: Version 11 movement algorithm

The Split Trail Problem

The ant in Figure 36 has following pheromone trail after exiting the nest. When it reaches its current
position, it has to choose the next best path to
take.

To choose the next best grid square, the ant will
look at the 8 surrounding squares and take the
one with the highest pheromone trail.

The trails a, b and c are a third of the strength of
trail X. This causes the ant to choose grid square
2, because its pheromone strength is 3 times as
strong. The means the ant will move backwards.

This results in another instance of the dancing
ant problem. When it moves back to square 2 its
next best position is again the position in figure
1. And this continues.

Even by selecting the best grid square randomly
with a bias towards the highest this problem still
seems to occur to much for the ants to follow the
trails properly.

32

Figure 36: Pheromone Strengths: a = 1, b = 1, c = 1, X = a
+ b + c = 3

The Bouncing Ant Problem

When an ant is following a pheromone trail and it encounters another ant moving towards it, it
randomly picks another direction to move in but this means that it moves off of the trail.

33

Figure 37:

a: two ants are moving toward each other.

b: ants meet each other.

c: first ant moves out of the way, in a random direction.

Version 12

Version 12 fixes 'The Bouncing Ant Problem' and 'The Split Trail Problem', introduces spreading
pheromone and features an improved, if somewhat messy, movement algorithm.

Solving The Split Trail and Bouncing Ant Problems

Instead of ants 'seeing' in all 8 directions around them, they will now only be able to see in front of
them. This is more realistic as animals usually see in the direction they are facing. This means that the
ants will move in the direction they are facing and not move backward to squares that are behind
them, even if the pheromone strength is stronger, because they won't be able to see them.

34

Figure 39: An ant facing
south would be able to choose
from 8 possible directions
(assuming all grid squares
around it are empty)

Figure 38: An ant facing
south can now only choose
the three squares in front of
it.

Figure 40: An ant facing
south-east can only
choose the three squares
in front of it

Figure 42: Demonstrates how the problem
does not now occur – the ant cannot now
choose the grid square behind it, so it must
choose one that is in the direction of the
food.

Figure 41:

a: two ants are moving toward each other.

b: ants meet each other. First ant can now only choose a random
direction in front of itself. It has the choice of either 3 or 1 as 2 is
occupied by the other ant.

c: first ant moves out of the way, in a random direction, it picked 3.
Now it has a choice of three move squares in front of itself -it will
pick the strongest and will then be back on the trail.

While ants can only see the three grid squares in front
of them, they can choose from all eight while they are
in the nest, this allows them to start in the best
direction.

Inspired by the ant simulator at [11] pheromone trails
now spread slightly when they are laid. This will
provide a wider area for the ants to find and then
follow. It will also allow more ants to follow the trail at
the same time.

A radius of two was found to work best, which is
shown in Figure 43. The spread pheromone is the same
strength as the originating pheromone particle, it is
strength should really be governed by an inverse square
law, because as something spreads out further it
becomes weaker (like the food strength).

The movement algorithm in this version is quite messy
due to many additions and changes. It needs re-writing.

35

Figure 43: Version 12 - An ant laying a trail back to
the nest.

Figure 44: Ants laying and following a pheromone trail to
some food

36

List surroundingSquares = free grid squares in current direction

if(in nest) {
if(there is any pheromone in any direction)

surroundingSquares = grid squares with pheromone only
}

if(surroundingSquares is empty) {
surroundingSquares = free grid squares in any direction

}

if(pheromone in surroundingSquares and not carrying food) {
surroundingSquares = grid squares with pheromone only

}

if(no next grid square or next grid square contains obstacle or (carrying food and next grid square contains food)) {
if(surroundingSquares is empty) {

 surroundingSquares = free grid squares in all directions
}

move to a random grid square in the surroundingSquares list
}else if(carrying food) {

if(in nest) {
drop food

}else{
move in current direction
current direction = new direction of nest

}
}else if(surroundingSquares contains food strength) {

sort surroundingSquares by food strength
move to a random square biased towards to the strongest
change direction to new square

}else if(surroundingSquares contains pheromone strength) {
sort surroundingSquares by pheromone strength
if(in nest) {

move to strongest square
}else{

move to a random square biased towards to the strongest
}
change direction to new square

}

if(not moving to previous square and carrying food) {
lay pheromone

}

if(no where to move) {
pick a random direction

}else if(carrying food and next grid square is nest) {
go into the nest

}else if(nextgridsquare contains an ant or and obstacle) {
sort squares by pheromone strength
move to strongest

}else if(carrying food and next grid square contains food) {
wait

}

Listing 9: Version 12 movement algorithm

Version 13

Version 13 was an attempt to create a smoother
animation to make the movements of the ants more
life-like. This meant making the grid squares smaller,
and having more of them. This wasn't very
successful as it slowed the whole program down
with the extra calculations, because of more grid
squares.

A smoother animation is not the most important part
of this application, since it is to demonstrate ant
behaviour. It can be slow and still show how ants
behave.

Therefore the next version will be built upon version
12.

37

Figure 45: Version 13 - An attempt to create a smoother
animation

Version 14

Version 14 includes a re-written move algorithm, and
ants follow a pheromone from the nest to the food.

Ants can get stuck behind the food if it is directly
between them and the nest, as they are trying to move
in the direction of the nest.

Another problem is that because ants move toward
the grid square with the highest pheromone strength
they sometimes move backward when an ant carrying
food passes them, as the ant carrying food has just
increased the strength. The trail should be directional
so that the ants will go the correct way, [10].

Trail following also only works if at least one ant has
found the food and returned to the nest. If most of the
ants have already left the nest before this happens,
then they will only find the food by randomly
stumbling across either the trail or the food.

Two experiments were carried out with this version,
the results are shown below. Three conditions were

tested: one where ants laid and followed trails but ignored the pheromone strength, one where they
laid and followed trails and followed the highest pheromone strength and one where they didn't
follow trails at all. The experiments showed that ants using trails and pheromone strength found the
food much quicker than with no trails.

Time for ants to collect 29 pieces of food

Trails Trails - no sort No Trails

2:03 2:42 3:18

2:55 3:06 2:14

2:09 2:54 2:21

2:17 2:21 2:34

Averages

2:20 2:46 2:37

Time for ants to collect 81 pieces of food

Trails Trails - no sort No Trails

4:09 5:26 5:54

5:01 5:56 6:41

4:17 6:35 5:43

Averages

4:29 5:59 6:06

38

Figure 46: Version 14 - Some ants laying a trail from
the food towards the nest

Figure 47: Version 14 - Some hungry ants follow the trail
towards food

39

if(in nest) {
look at all 8 surrounding squares
if(carrying food) {

drop food
}else if(somewhere to move) {

if(food nearby) {
move to it

}else if(food strength nearby) {
move to strongest food strength

}else if(pheromone nearby) {
move to strongest pheromone strength

}else{
move to a random square

}
change current direction to new position

}
}else{

look at only the 3 squares in front
if(carrying food) {

current direction = direction of nest
ignore food grid squares

}

if(nowhere to move in front) {
look all around
pick a random direction

}else{
if(food nearby and not carrying food) {

move to a food square
pick up food

}else if(food strength nearby and not carrying food) {
move to grid square with highest food strength
current direction = direction of new square

}else if(pheromone nearby and not carrying food) {
move to grid square with highest pheromone strength
current direction = direction of new square

}else{
if(carrying food) {

move to next square
}else if(on trail and no trail in front) {

turn around
}else if(three free squares in front) {

move to middle one
}else{

move to random free grid square in front
}

}
}

}

if(carrying food) {
lay pheromone

}

Listing 10: Version 14 movement algorithm

Version 15

This version implements directional pheromone trails. It does not take into account pheromone
strength, just the direction of the pheromone.

When an ant carries food back to the nest it sets the
direction of the trail of each square to the opposite
direction to the nest, i.e. towards the food. As the
trail spreads out to surrounding squares they cannot
point in the opposite direction to the nest, so they
point to the square where the pheromone
originated. This can been seen in Figure 49 which
shows the direction that the pheromone is pointing
at each grid square.

An ant will exit the nest and pick the strongest
square to move to, it will then pick the next grid
square in the direction that its current square is
pointing. If an ant has to move off the main part of
the pheromone trail it will find itself on a grid
square where the trail points back towards the main
part of the trail.

A slight problem is found on the left side of the
trail in Figure 49 as all three point into the nest.

In this version the pheromone also spreads to a
radius of 5 squares from its originating square, to give the ants more room to move along the trail.

Time for ants to collect 29 pieces of food

Normail Trails (Version 14) Directed Trails

2:03 2:01

2:55 2:06

2:09 2:03

2:17 1:45

Averages

2:20 2:00

40

Figure 48: Version 15 - Ants laying and following a
pheromone trail

Figure 49: Directional pheromones, arrows represent the direction. There is a direct
route to the food from the nest, and the spread pheromone points to the direct route.
There is a slight problem with the ones to the left of the nest as they point into the
nest.

41

if(in nest) {
look at all 8 surrounding squares
if(carrying food) {

drop food
}else if(somewhere to move) {

if(food nearby) {
move to it

}else if(food strength nearby) {
move to strongest food strength

}else if(pheromone nearby) {
move to strongest pheromone strength

}else{
move to a random square

}
change current direction to new position

}
}else{

look at only the 3 squares in front
if(carrying food) {

current direction = direction of nest
ignore food grid squares

}else if(pheromone nearby and no food strength nearby) {
current direction = direction of pheromone

}

if(nowhere to move in front) {
look all around
pick a random direction

}else{
if(food nearby and not carrying food) {

move to a food square
pick up food

}else if(food strength nearby and not carrying food) {
move to grid square with highest food strength
current direction = direction of new square

}else{
if(carrying food) {

move to next square
}else if(on trail and no trail in front) {

turn around
}else if(three free squares in front) {

move to middle one
}else{

move to random free grid square in front
}

}
}

}

if(carrying food) {
lay pheromone

}

Listing 11: Version 15 movement algorithm

Version 15.1

This version uses pheromone direction and strength. This works better as the food is found quicker
than with just using directions (see experiment below).

Time for ants to collect 29 pieces of food

Directed + Strength Directed Trails (Version 15.0)

1:49 2:01

1:49 2:06

1:50 2:03

1:41 1:45

Averages

1:47 2:00

42

43

if(in nest) {
look at all 8 surrounding squares
if(carrying food) {

drop food
}else if(somewhere to move) {

if(food nearby) {
move to it

}else if(food strength nearby) {
move to strongest food strength

}else if(pheromone nearby) {
move to strongest pheromone strength

}else{
move to a random square

}
change current direction to new position

}
}else{

look at only the 3 squares in front
if(carrying food) {

current direction = direction of nest
ignore food grid squares

}else if(pheromone nearby and no food strength nearby) {
current direction = direction of pheromone

}

if(nowhere to move in front) {
look all around
pick a random direction

}else{
if(food nearby and not carrying food) {

move to a food square
pick up food

}else if(food strength nearby and not carrying food) {
move to grid square with highest food strength
current direction = direction of new square

}else if(pheromone nearby and not carrying food) {
move to grid square with highest pheromone strength
current direction = direction of new square

}else{
if(carrying food) {

move to next square
}else if(on trail and no trail in front) {

turn around
}else if(three free squares in front) {

move to middle one
}else{

move to random free grid square in front
}

}
}

}

if(carrying food) {
lay pheromone

}

Listing 12: Version 15.1 movement algorithm

Version 16

This version takes a different approach to dealing with
pheromone trails. I wanted to eliminate the need for
ants to 'know' where their nest is - apart from
'cheating', this also caused problems when obstacles
where placed in the way because the ants know that the
nest is in the direction towards the other side of the
obstacle so they move that way. Ants are also now
randomly coloured so that individual ants can be
followed easily.

I have based this version on some ideas from the [2]
file sharing application (More about MUTE later, in
Part 2).

Ants lay a trail all the time. While they are looking for
food they lay a blue trail, when they have found food
they lay a green trail. The idea is that when an ant finds
some food it turns around and follows its own trail
back to the nest.

This version introduces a new class -
PheromoneParticle. Every ant lays its own pheromone
particle as it moves along, over other pheromone

particles.

The Pheromone contains a stack of PheromoneParticle's. The direction of the Pheromone is the
highest frequency direction in the stack of PheromoneParticle's. Every 60 seconds a
PheromoneParticle is removed fromt the bottom of the stack. A PheromoneParticle also knows which
ant laid - so that an ant could follow his own trail.

When an ant leaves the nest it lays a blue trail, then when it finds food if there is no green trail to
follow back to the nest, it follows its own trail. This works almost exactly as previous versions but
whereas the ants just 'knew' where the nest was, in this version the ants use the trail they laid as clues
to find the nest again.

I re-wrote the move() method again. Though its not working fully yet, which can be seen in Figure 50
where the green trail should lead back to the nest.

44

Figure 50: Version 16 - Showing two kinds of trail:
blue trails lead away from the nest and green trails
(hopefully) lead towards the nest. This is not the case
in this example though, there is some improvement to
be made.

45

if(in nest) {
look at all 8 surrounding squares
if(carrying food) {

drop food
}else if(somewhere to move) {

if(food nearby) {
move to it

}else if(food strength nearby) {
move to strongest food strength

}else if(green pheromone nearby) {
move to strongest pheromone strength

}else if(blue pheromone nearby) {
move to strongest pheromone strength

}else{
move to a random square

}
change current direction to new position

}
}else{

look at only the 3 squares in front
if(carrying food) {

current direction = direction of nest
ignore food grid squares

}else if(pheromone nearby and no food strength nearby) {
current direction = direction of pheromone

}

if(nowhere to move in front) {
look all around
pick a random direction

}else{
if(food nearby and not carrying food) {

move to a food square
pick up food

}else if(food strength nearby and not carrying food) {
move to grid square with highest food strength
current direction = direction of new square

}else if(pheromone nearby) {
if(carrying food) {

if(trail green trail nearby) {
if(own trail) {

follow it
}else{

follow strongest green trail
}

}else if(blue trail nearby) {
follow strongest blue trail

}
current direction = direction of new square

}else{
if(blue trail nearby) {

follow strongest blue trail
}else{

move to next square in current direction
}

}
}else{

if(carrying food) {
move to next square

}else if(on trail and no trail in front) {
turn around

}else if(three free squares in front) {
move to middle one

}else{
move to random free grid square in front

}
}

}
}

if(carrying food) {
lay pheromone

}

Listing 13: Version 16 movement algorithm

Version 17.1

Versions 17 and 17.1 attempt to improve the move
algorithm. It has been re-written, though still does
not work successfully.

An auxiliary method called getNextGridSquare() is
where the main calculations for the next movement
happen. It is based on version 16, with modifications.

In this version ants do not follow trails back towards
the nest successfully when they find food, this leads
to trails all over the grid. Even so, some ants do make
it back to the nest.

46

Figure 51: Version 17 - ants laying and following trails

47

if(in nest) {
look at all 8 surrounding squares
if(carrying food) {

drop food
}else{

if(towards nest pheromone nearby) {
pick grid square with strongest towards nest pheromone.

}

if(no empty square) {
pick random square

}
change direction to direction of chosen grid square

}

}else{
if(there is nowhere to go infront) {

look behind
}

if(there is nowhere to go behind or (onTrail and carryingFood)) {
look sideways
change direction after choice, as no squares where available in front

}

if(carrying food and nest nearby) {
chose nest

}else if(not carrying food and food nearby) {
chose food square

}else if(not carrying food and food strength nearby) {
chose grid square with strongest food strength.

}else if(carrying food and pheromone strength nearby) {
if(pheromone towards nest nearby) {

choose grid square with strongest toward nest pheromone
}else if(pheromone away from nest nearby) {

choose grid square with strongest away from nest pheromone
}

if(no free squares) pick random square biased towards highest pheromone.
}else if(three free squares in front) {

pick middle square
}else if (any free squares in front) {

pick random square
}else{

wait
}

}

Listing 14: Version 16 movement algorithm

Ant Maze

In order to demonstrate ants shortest path finding ability, a maze could be constructed by placing
obstacles on the grid, as in Figure 52. In theory it should be possible to place the obstacles in this way
and for the ants to treat them as obstacles without any modification.

48

Figure 52: Graph Maze

Conclusion to Part 1

According to the original specification this section of the report aimed to simulate 'the behaviour of
ants in order to show how they interact and work collectively'. Partially success was achieved. Ants
could be seen to find the food randomly, and lay a trail for other ants to follow. Experiments showed
that using pheromone trails meant faster food collection, and although versions 17 was not as
successful as hoped due to time constraints, it demonstrates the possibility for further work on the
simulator.

Several problems were encountered the main one being ants getting stuck behind obstacles – which
was actually to do the ants just 'knowing' where the nest was, version 16 attempted to solve this
problem but failed.

Due to the obstacle problem the maze idea will not work properly as it relies on the ants avoiding
obstacles. Part 2 introduces an Ant World using a graph data structure, which aims to eliminate the
obstacle problem.

49

Improvements and Future Work

Problems related to obstacles are the most important problem to fix in this application. If ants avoid
obstacles well, then many other aspects of the application would work. The theory behind the two
pheromone trails in version 16 seems to be correct the implementation is somewhat more
complicated. Ants need to be restricted to travelling on trails move, they move away from a trail too
easily.
The two trail routing is carried through to part 2 of this report where it will be used to help ants
traverse graphs.

50

Part 2: Applications of Ant Behaviour

The second part of this report is concerned with the applications of ant behaviour, demonstrated in
part 1, in the field of computer science. As we have already established ants are extremely good at

finding the shortest distance between their nest and a food source. They also
work as a collective, working individually but appearing to work as one.
Our Ant World can be represented as an undirected graph, which in turn could
represent something such as a computer or telecommunications network. The
ants task would now be to start at the nest node, and find the shortest path to
the food node. By using a graph to represent the Ant World the obstacle
problem of the previous Ant Simulator is instantly removed. The graph
represents all the ants possible routes, and as such, obstacles are not part of the
graph.
Now going back to 'The Double Bridge Experiment', we can see how the Ant
World can be expressed as a graph.
Figure 53 shows a graph that represents this experiment, where A is the nest
and C is the food source.
Every time unit an ant will move to another node. Route A -> B -> C is double
the length of route A -> C to get from the nest to the food. So this would be

the best choice for our virtual ants.
It is assumed that all edge weights are equal, though to be more useful this would need to be extended
to use weighted graphs. For example in a telecommunications network weights could represent the
actual distance between nodes.

51

Figure 53: The Double
Bridge Experiment Graph

Why ant algorithms?

To answer this let us consider one application of ants behaviour - network routing - more specifiably
routing in peer-to-peer (from now on p2p) networks. p2p applications allow a network of users to
share files and/or other data. Standard p2p applications provide a direct connection between the
computers exchanging data, once it has been established where the needed data is on the network.
This means that the uploader and the downloader must therefore known each others IP addresses.

Using ant algorithms to route data through a p2p network will provide anonymous communications
between all parties involved. One application that has implemented this is the MUTE p2p application.

In contrast to standard p2p applications, in an application such as MUTE, messages are routed
through the network by using local clues, instead of using a direct connection between the two nodes
exchanging data. Each node in the network knows only its neighbours, and the strength of the edges
to each of those neighbours. When an ant reaches a node it uses these local clues to decide its next
move. When it reaches the nest it can use the same technique to return to the nest. When ants travel
these routes they lay more pheromone and increase the strength of the trail.

The remainder of this section of the report will attempt to implement and demonstrate ant routing
algorithms based on the MUTE p2p idea, to provide anonymous network routing.

52

Proposed Software Architecture

Using a Object-Oriented approach the Graph based Ant World will consist of Node and Edge objects,
where each Node can contain Ant objects, and each edge has a pheromone strength associated with it.
It should be possible for the end-user to draw a graph on-screen via mouse actions, and see the
simulation played out to eventually display the shortest path between two designated nodes. The
simulation should be slowed down to allow the user to see what it happening and/or allow the user to
run the simulation step-by-step. The number of time units will be measured as a way of deducing the
time complexity of the algorithm.

Technical Considerations

The base of the application needs to be a graph structure to be implemented using adjacency lists. A
graphical user interface will allow the user to graph and edit the graph by adding, deleting and
moving nodes and edges on a canvas.

Each node should be capable of holding ants and/or food. Ants will travel along the edges of the graph
to find food, and return it to the nest. Like the Simulator each ant will have simple rules and must not
pass messages to other ants. Each edge will have a pheromone strength, to guide the ants around the
graph.

53

Figure 54: Ant Graph World Proposed Class Diagram

Ant Graph World

Version 1

Version 1 implements a basic graph data structure
using adjacency lists.

In this version the user can:

● click anywhere on the white canvas to add
a node in that position

● click a node to select it

● click a second node to create an edge
between it and the select node

● right-click to delete a node

The implementation

The node class extends from Java's built in
Rectangle class, in order for it to use functions
such as intersect. When the Node is drawn on the
screen, an oval is created based on the dimensions
of the Rectangle.

Each node contains a list of ants and food that it
may contain – though this has not been fully

implemented yet.

The Edge class extends from Java's Line2D.Double class, has references to its Node's and contains a
pheromone object.

The Graph class contains the Node and Edge objects, and the GraphCanvas draws the Graph on the
screen, and also waits for user input via a MouseListener.

This version does not do much apart from allow the user to draw a graph on the screen, subsequent
versions will also implement the ant algorithms.

54

Figure 55: Version 1 - User created graph, representing
'The Double Bridge Experiment'

Version 2

Version 2 features an improved interface for
creating graphs. It allows the user to reposition
nodes by dragging them, nodes are now
labelled and edges can now be removed.

Nodes are still placed as in the previous
version. But if a node is already selected and
another node placed an edge will automatically
be created between the selected and new
nodes. Right-click on an edge will remove it,
the same for right-clicking on a node.

If a user drags a node that is connected to any
edges then those edges will reposition
automatically. This is very simply
implemented – the edges end-points are the
centres of the nodes at each end, therefore
when the nodes position is updated the edges
position is also updated.

The Edge class in this version is a subclass of
Java's Polygon class. This is necessary as
Line2D.Double objects only have one
thickness, which was too thin to be able to
select by clicking it with the mouse. With the
help of some simple maths from the nice
people at
http://www.rgagnon.com/javadetails/java-
0260.html the Edge class now draws a line by
creating a polygon for its x1, y1, x2, y2, and
width parameters.

55

Figure 56: Version 2 - The Double Bridge Graph

Figure 57: Version 2 - The Double Bridge Graph moved

http://www.rgagnon.com/javadetails/java-0260.html
http://www.rgagnon.com/javadetails/java-0260.html

Version 3

Version 3 improves the implementation of
the graph objects, by introducing a new
class GraphComponent. In this version
Node and Edge are subclasses of
GraphComponent.

A GraphComponent is a subclass of Java's
built in Polygon class. Version 2 already
used a polygon to represent an edge, and
also a circle can be expressed as a polygon.
The GraphComponent class is therefore in
charge of the polygon's coordinates and of
drawing.

The application is also now pre-loaded with
a test graph.

56

Figure 58: Version 3 - Test Graph

Version 4

Version 4 begins to implement ant algorithms for
finding the shortest path from node N to node l. At
the beginning of the simulation 5 ants (a,b,c,d and
e) are in the nest at node N in figure 59.

The pheromone trails are decrease by 1 every 3
time units.

There is a problem with the positioning of the
edge labels, which indicate the pheromone
strength. They need to be placed near the middle
of an edge.

57

Figure 59: Version 4 - Test graph, Nest is at node 'N' and
food is at node 'l'. 5 ants are in the nest.

if(not just picked up food and no food at current node and more than one edge) {
dont move to previous node

}

if(carrying food) {

if(A strength > 0) {
travel via highest value A trail edge

}else if(A+T strength == 0) {
travel via random edge

}else{
travel via lowest value T trail edge

}
increase chosen edge T pheromone strength

}else{

if(T strength > 0) {
travel via highest value T trail edge

}else if(A+T strength == 0) {
travel via random edge

}else{
travel via lowest value A trail edge

}
increase chosen edge A pheromone strength

}

if(current node contains food and not carrying food and not in nest) {
pick up food

}

Listing 15: Version 4 - Ant World Graph - Ant movement algorithm

A short description of classes

Ant

The Ant class represents a single ant in the application. Each ant has a name based on a character,
starting at 'a'. If the ant is carrying food then the letter is capitalized. In the later versions of this
application the threading was removed due to problems it caused with routing. This feature needs to
be replaced, as the ants should be able to act independently.

Each ant has a memory of the previous node it has visited, this is not necessary and should be
replaced with pheromone clues to decide where not to travel to.

Food

An empty class representing a piece of food.

Pheromone

The pheromone class represents pheromone. One pheromone object is placed on each
edge. Pheromone is increased as ants move over it. The pheromone contains a stack of
PheromoneParticle objects.

Each PheromoneParticle object contains a direction, either Toward Nest (T) or Away
From Nest (A), and a reference to the ant that 'deposited' the particle.

Figure 60 shows a graphical representation of a Pheromone object. The pheromone has
been created by 5 ants, 2 of them laying pheromone twice.

The overall direction of a Pheromone object is the highest frequency of the directions
of the pheromone particles. So the pheromone object in Figure 60 has an overall
direction of Away From Nest.

The strength of a Pheromone object can be measured in each direction by just counting
the particles of that direction.

The Pheromone object knows which ants created PheromoneParticles, therefore this
could be used instead of the ants having a memory to remember the previous square
they visited.

Threading also needs to be re-activated in Pheromones as well as Ants.

Node

A Node object represents one node on the graph. It can contain ants and/or food. Each node has a
name, based on a character starting at 'a'. It has an x and y position corresponding to its position on
the GraphCanvas. Further versions could arrange arbitrary graphs automatically, but this version
nodes are placed by the user into a position.

Nest

A Nest object is a specialised Node object. It overrides the addAnt(ant : Ant) : void method so that it
removes the food from the ant before it adds the ant to the node's list of ants.

Edge

An edge object represents a graph edge between two nodes. It has a reference to the node objects at

58

Figure 60: A
Pheromone
Stack

each of its ends. If the position one of its nodes is updated, its end coordinates are also updated
meaning that the edge will following the movement of its end nodes. This allowed for the easy
implementation of node dragging. Each edge has a Pheromone object as discussed.

The Edge class implements the Comparable interface allowing edges to be sorted. They are sorted by
pheromone strength, and allows ants to sort edges of the node that they are at to make a decision
about where to move next.

GraphComponent

Edge and Node classes are sub-classes of GraphComponent. A GraphComponent is a Polygon, and
both edges and nodes (circles) are representation by polygons via this class. This class is responsible
for drawing the polygons on screen (though both Node and Edge override the draw method, to draw
extra things), and also for highlight and selection parameters.

Graph

The Graph class represents a mathematical graph consisting of Node and Edge objects, via an
adjacency list. It includes methods to add/remove nodes and edges, and to highlight the shortest path
via pheromone clues. The step() : void method is used to move the ants one step, and reduce the
pheromone strength across the graph.

GraphJFrame

The GraphJFrame is the main window which holds the canvas. It also contains a method for creating
a test graph, and handles keyboard input.

59

The Algorithm

The ant algorithm will allow our ants to travel from the nest node to some node X which contains
food, this will hopefully be the shortest path.

The ants should do this without know where they have been or where they need to go next. They only
know that they have arrived at there destination when they find the food. Then they will need to travel
back to the nest, without knowing where it is. They do this by using the clues they leave behind in the
form of pheromone trails.

As in the later version of the Ant World Simulator, there are two kinds of trails: toward nest trails (T)
and away from nest (A) trails. While ants are looking for food they lay an A trail and look for a T trail,
while they are carrying food they lay a T trail and look for a A trail.

Simple rules:

looking for food lay A trail follow strongest T trail or weakest A trail

carrying food lay T trail follow strongest A trail or weakest T trail

An ant looking for food without the choice of a T trail, would be best off following a trail where less
ants have been looking for food, as a food source has not been discovered yet. Therefore by choosing
a path that less ants look for food have chosen, it has more chance of finding a new food source, than
if they all went the same way. The same holds for ants carrying food also, and following the weakest
T trails.

If there are no trails at all then an ant will choose a direction randomly.

Figure 61 shows a hypothetical node, with four edges.

An ant carrying food would choose either W or Z because both of those
edges have A pheromone of strength 4.

An ant looking for food would choose Z as it
has a T pheromone of strength 4.

Figure 62 also shows a hypothetical node with
four edges, this time there is no A trail on any
of those edges.

An ant carrying food would choose the edge with the weakest T trail, as
less ants carrying food have recently gone that way. This would me either
X or W.

An ant look for food will still choose Z as it has the highest T pheromone
strength.Figure 63 shows a hypothetical node
with four edges, this time there is no T trail on any of those edges.

An ant looking for food would following the weakest A trail as less ants
looking for food would have travelled that way.

60

Figure 61: Hypothetical Node
A

Figure 62: Hypothetical Node
B

Figure 63: Hypothetical Node
C

This algorithm should stop ants travelling back to a node that had just come
from, in certain circumstances.

Figure 64 contains a node, C, that 1 ant looking for food has travelled to. It
now has to make the decision between W and Z, the only edges connected
to the node C.

As there is no T trail to help it decide, it will choose the lowest A trail. It
has just laid some A pheromone on edge W, so therefore it will choose Z.

One case where this rule must be ignored is when a node only has one edge,
the ant must therefore travel back on its path as there is only one option.

This case also does not hold if trails are of equal strength, for example in Figure 64 the A trail strength
of Z was also one, the ant would choose randomly as both are the 'best' choice. In version 4 this is
patched by having the previously travelled edge removed from its options (i.e. ants have a memory of
the node they had just come from). A better implementation, that does not require the ants to have
memory, would be to look at what ant laid the pheromone trail, which would allow it to 'know' its
previous node.

61

Figure 64: No backward
movement

Test Graphs

In order to demonstrate the application some test graphs are presented in this section.

Double Bridge Graph

The theory behind the double bridge experiment has been explained, now here is the application in
action – finding the shortest path to the food. There are two ants (a and b) and 5 pieces of food. It
takes 7 times units for the food to be collected. When the last piece of food is returned the shortest
path is highlighted.

62

Figure 66: Double Bridge
Graph, T=0

Figure 67: DBG, T=1 Figure 65: DBG, T=2 Figure 68: DBG, T=3

Figure 69: DBG, T=4 Figure 70: DBG, T=5 Figure 71: DBG, T=6

The Default Test Graph

When the algorithm was used on the test graph, it did not always produce the shortest route due to the
initial ant finding the food via a longer route, and also due to ants being stuck in loops. Figures 73 and
72 show a successful run of the application.

63

Figure 73: The Default Test Graph at T=0
Figure 72: The Default Test Graph at T=34

Loop Problems

In reality a graph is likely to be more complicated than the double bridge graph, the test graph is an
example of a slightly more complicated one. This introduces the problem of loops.

Figure 74 shows a possible loop problem in the test graph. Ants could find them self stuck in a loop,
due to pheromone strength. As an ant travels around the loop it will reinforce the pheromone thereby
wanting even more to travel around the loop.

One possible solution to this problem is to give ants a limited form of memory [1]. Ants would
remember were they have been and wouldn't travel the same path twice (unless they have to).

Another solution would be for the ants to die after a certain number of time units. An an would have a
Time To Live value, which would be decremented by one every move. This would mean that an ant
stuck in a loop would eventually die. More ants, born in the nest, would be able to replace the dead
ants. It could be that each set of newly hatched ants find themselves in the same loops, but due to
randomness of their initial movements it could be assumed that not all new sets of ants will get stuck.
This has the advantage that the ants do not need to remember anything.

64

Figure 74: A possible loop problem

Conclusion to Part 2

Part 2 was partly successfully as it allowed the user to create and modify a graph via a graphical user
interface, and use an ant based algorithm from behaviour learned in Part 1 to find the shortest distance
from the nest node to the food node.

Loop problems occurred. Also due to the randomness of the first choices, the algorithm did not
always choose the shortest route between the nest and food.

65

Improvements and Future Work

Consider again the double bridge experiment. It is entirely possible that both ants initially follow the
longest path and due to the positive feedback this creates, they will continue to follow that path. Now
consider a much larger graph, such as a peer-to-peer network, where all the ants initially travel the
long path. This will lead to great inefficiencies in data transfer, as all the data would be routed along a
less-than adequate route.

In order to combat this problem, we can divide the message routing into two phases: route discovery
and message delivery.

Two Phase Algorithm

Route Discovery

The route discovery phase involves initially finding the shortest path from the starting node (the nest)
to the destination node (the food source). An ant, beginning at the starting node, must clone itself and
sends copies of itself to every neighbour node. This a breadth-first-search algorithm. When an ant
finds the node with the food, it will return to the nest along its own path.

If an ant finds that all edges from its current node have already been travelled i.e. they have
pheromone strength > 0, then it must stop and wait to die. This will stop ants moving back if they
have reached a node with only one edge and also stop nodes being travelled more than once. Again
this allows the ants to rely on local clues rather than referring to a global list of visited nodes.

The first ant to reach the food, will have gotten to it in the shortest time, and therefore have taken the
shortest path. Once an ant returns to the nest the route discovery phase is complete – the route
between the nest and the food has been discovered.

Other ants may discover the food also, after the first ant, though they will follow the first ant back
(think about the double bridge experiment again).

Giving a time to live (TTL) value for each ant will mean they will die after the TTL has expired, so
that ants will not be left stuck at nodes.

66

Figure 76: T=0 Figure 77: T=1
Figure 75: T=2

Figure 78: T=3 Figure 79: T=4

Message delivery

After the first ant has returned to the nest, a path now exists, marked by pheromones, for messages to
be sent from the nest to the food source.

Any messages can now be routed along the pheromone trail marked path. The trail will become
stronger as more ants use the path, due to the positive feedback of more ants laying more pheromone.

After the food source has been depleted (for example maybe the computer represented by the food
node has left the network) ants will continue moving all the trial left by the previous ants, but the
pheromone evaporates, so after a certain time there will be no trail left for the ants to follow.

When there is no trail from the starting node the route discovery phase must be started again, in order
to find another food source.

MUTE [2] uses this technique of broadcasting to initially set up the trail for subsequent messages to
travel.

67

Conclusion
Part 1 of this report intended to research and implement a simulation of ant behaviour. There were
many problems encountered such as ants getting stuck at obstacles, but overall a lot was learned about
ant behaviour.

Part 2 of this report intended to research and implement applications of the behaviour learned from
part 1. It solved the obstacle problem by representing the Ant World as a graph, which could in turn
represent something such as a computer network. Due to the randomness of the choice made by the
first ant, the ant algorithm did not always find the shortest route. Further work has been suggested
influenced by the MUTE peer-to-peer application, to complete this application.

68

Bibliography
1: Marco Dorigo and Thomas Stützle, Ant Colony Optimization, 2004
2: , , , http://mute-net.sourceforge.net/
3: Hussein, O.; Saadawi, T., Ant routing algorithm for mobile ad-hoc networks (ARAMA), 2003
4: Dr Rob Harris, Dr Natalie Hempel de Ibarra, Dr Paul Graham and and Professor Thomas Collett,
Priming of visual route memories', 2005
5: Jackson, D.E., Holcombe, M., andRatnieks, Trail geometrygives polarity to ant foraging networks,
2004
6: Goss. S., Aron. S., Deneubourg J.L. and J.M. Pasteels, Self-organized shortcuts in the Argentine
ant, 1989
7: Goss. S., Aron. S., Deneubourg J.L. and J.M. Pasteels, Self-organized shortcuts in the Argentine
ant, 1989
8: , Swarm Intelligence,
9: Mesut Günes, Martin Khümer, and Imed Bouazizi, Ant-Routing-Algorithm (ARA) for Mobile
Multi-hop Ad-hoc Networks - New Features and Results, 2003
10: Dr Rob Harris, Dr Natalie Hempel de Ibarra, Dr Paul Graham and and Professor Thomas Collett,
Priming of visual route memories', 2005
11: John Montgomery, Ants foraging for food, ,
http://website.lineone.net/~john.montgomery/demos/ants.html

69

Appendix. A Accompanying Software

A CD containing application software and source code has been distributed with this report. On it you
will find all versions of the two software applications, and an electronic version of this report.

Each version is distributed as a Jar file and requires that Java Runtime Environment 1.6 or greater be
installed.

The CD contains a folder for Ant World Simulator, and Ant Graph World. Each of these contains a
folder for each version and inside these a Netbeans project folder, in which you'll find a dist folder
containing the Jar file, and a src folder containing the source code.

An accompanying website also mirrors the contents of the CD at http://whoyouknow.co.uk/ants/. On
the website you will find all versions of the software available as Java Web Start applications, again
you will need JRE 1.6 or greater to run the applications. Several videos of the Ant World Simulator
are available to view of the application in action.

These easiest way to run the software is to use the Java Web Start versions via the website, or run the
jar file from the command line: java -jar Ant.jar

70

http://whoyouknow.co.uk/ants/

Appendix. B Source Code

Included in this appendix is the source code for the latest versions of both the simulator and graph
applications. Source code for all versions can be found on the accompanying CD and website.

Ant World Simulator

Ant.java
 1/*
 2 * Ant.java
 3 *
 4 * Created on 07 October 2006, 15:45
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import ants.event.AntEvent;
 13import ants.event.AntListener;
 14import ants.event.PickedUpFoodAntEvent;
 15import java.awt.Color;
 16import java.awt.Graphics;
 17import java.util.Collections;
 18import java.util.HashSet;
 19import java.util.Random;
 20import java.util.Vector;
 21
 22/**
 23 *
 24 * @author James Hamilton
 25 */
 26public class Ant extends MyObject implements Runnable {
 27
 28 private Thread move;
 29 private int currentDirection = GridSquare.getRandomDirection();
 30 private Food food = null;
 31
 32 private GridSquare lastGridSquare = null;
 33 private GridSquare previousGridSquare = null;
 34 private HashSet<GridSquare> dontVisit = new HashSet<GridSquare>();
 35
 36 private Color color = Color.red;
 37
 38
 39 /** Creates a new instance of Ant */
 40 public Ant() {
 41 }
 42
 43 public Ant(Ant ant) {
 44 super(ant.getGridSquare());
 45 }
 46
 47 public Ant(GridSquare gridSquare) {
 48 super(gridSquare);
 49 Random generator = new Random();
 50 color = new Color(generator.nextInt(255), generator.nextInt(255),generator.nextInt(
255));
 51
 52 // setGridSquare(gridSquare);
 53 }
 54
 55 private Vector<AntListener> listeners = new Vector<AntListener>();
 56
 57 public void addAntListener(AntListener listener) {
 58 listeners.add(listener);
 59 }
 60
 61 public void notifyListeners(AntEvent e) {
 62 for(AntListener listener : listeners)
 63 listener.antEventHandler(e);
 64 }

71

 65
 66 public boolean onTrail() {
 67 return getGridSquare().getPheromoneStrength() > 0;
 68 }
 69
 70 public boolean onOwnTrail() {
 71 return getGridSquare().getPheromone().laidBy(this);
 72 }
 73
 74
 75 public GridSquare getNextGridSquare() {
 76
 77 GridVector squares;// = getGridSquare().getGridSquares(1).getFreeGridSquares();
 78 squares =
getGridSquare().getGridSquaresInDirection(currentDirection).getFreeGridSquares();
 79
 80 if(carryingFood()) squares = squares.getEmptyGridSquares();
 81
 82 GridSquare currentGridSquare = getGridSquare();
 83 GridSquare nextGridSquare = null;
 84
 85 if(getGridSquare().isNest()) {
 86 if(carryingFood()) {
 87 Grid.getInstance().getNest().addAnt(this);
 88 }else{
 89 squares = getGridSquare().getGridSquares(1).getFreeGridSquares();
 90
 91 if(squares.getPheromoneStrength(PheromoneParticle.TOWARD_NEST) > 0) {
 92
 93 squares = squares.getPheromoneGridSquares();
 94
 95 GridVector towardsNest =
squares.getPheromoneGridSquares(PheromoneParticle.TOWARD_NEST);
 96 GridVector awayFromNest =
squares.getPheromoneGridSquares(PheromoneParticle.AWAY_FROM_NEST);
 97
 98
 99 if(towardsNest.size() > 0) {
 100 Collections.sort(squares, GridSquare.PheromoneStrengthComparator);
 101
 102 nextGridSquare = squares.firstElement();
 103 }
 104 /*else if(awayFromNest.size() > 0) {
 105 if(awayFromNest.getPheromoneGridSquares(this).size() > 0) {
 106 squares = awayFromNest.getPheromoneGridSquares(this);
 107 }else{
 108 squares = awayFromNest;
 109 }
 110
 111 Collections.sort(squares, GridSquare.PheromoneStrengthComparator);
 112
 113 nextGridSquare = squares.firstElement();
 114 }*/
 115
 116 }
 117
 118 if(nextGridSquare == null) nextGridSquare = squares.getRandomGridSquare();
 119 currentDirection = getGridSquare().getDirectionOf(nextGridSquare);
 120 }
 121 }else{
 122
 123 if(squares.size() == 0) {
 124 //if there is nowhere 2 go infront, look behind.
 125 currentDirection = GridSquare.getOppositeDirection(currentDirection);
 126 squares =
getGridSquare().getGridSquaresInDirection(currentDirection).getFreeGridSquares();
 127 }
 128
 129 boolean changeDirection = false;
 130
 131 if(squares.size() == 0 || (onTrail() && carryingFood())) {
 132 //if there is nowhere 2 go behind, look look sidewards.
 133 squares = getGridSquare().getGridSquares(1).getFreeGridSquares();
 134 changeDirection = true;
 135 }
 136
 137 if(carryingFood() && squares.containsNest()) {

72

 138 nextGridSquare = Grid.getInstance().getNest().getGridSquare();
 139 }else if(!carryingFood() && squares.containsFood()) {
 140 squares = squares.getFoodGridSquares();
 141
 142 nextGridSquare = squares.getRandomGridSquare();
 143 }else if(!carryingFood() && squares.getFoodStrength() > 0) {
 144 squares = squares.getFoodStrengthGridSquares();
 145
 146 Collections.sort(squares, GridSquare.FoodStrengthComparator);
 147
 148 nextGridSquare = squares.firstElement();
 149 }else if(carryingFood() && squares.getPheromoneStrength() > 0) {
 150 squares = squares.getPheromoneGridSquares();
 151
 152 GridVector towardsNest =
squares.getPheromoneGridSquares(PheromoneParticle.TOWARD_NEST);
 153 GridVector awayFromNest =
squares.getPheromoneGridSquares(PheromoneParticle.AWAY_FROM_NEST);
 154
 155 if(carryingFood()) {
 156 if(towardsNest.size() > 0) {
 157 Collections.sort(squares, GridSquare.PheromoneStrengthComparator);
 158
 159 nextGridSquare = squares.firstElement();
 160 }else if(awayFromNest.size() > 0) {
 161 if(awayFromNest.getPheromoneGridSquares(this).size() > 0) {
 162 squares = awayFromNest.getPheromoneGridSquares(this);
 163 }else{
 164 squares = awayFromNest;
 165 }
 166
 167 Collections.sort(squares, GridSquare.PheromoneStrengthComparator);
 168
 169 nextGridSquare = squares.firstElement();
 170 }
 171 }
 172
 173 Collections.sort(squares, GridSquare.PheromoneStrengthComparator);
 174
 175 nextGridSquare = squares.getRandomGridSquare(true);
 176
 177
 178 }else if(squares.size() == 3) {
 179 nextGridSquare = squares.getMiddleGridSquare();
 180 }else if(squares.size() > 0) {
 181 nextGridSquare = squares.getRandomGridSquare();
 182 }else{
 183 //dont move
 184 }
 185
 186 if(changeDirection)
 187 currentDirection = getGridSquare().getDirectionOf(nextGridSquare);
 188
 189 }
 190
 191 return nextGridSquare;
 192 }
 193
 194 public synchronized void move() {
 195
 196
 197 if(carryingFood()) {
 198
 199 getGridSquare().getPheromone().increaseStrength(this,
PheromoneParticle.TOWARD_NEST);
 200
 201 }else{
 202
 203
 204 getGridSquare().getPheromone().increaseStrength(this,
PheromoneParticle.AWAY_FROM_NEST);
 205
 206 }
 207 GridVector squares = getGridSquare().getGridSquares(1).getFreeGridSquares();
 208 GridSquare currentGridSquare = getGridSquare();
 209 GridSquare nextGridSquare = getNextGridSquare();
 210

73

 211
 212
 213
 214
 215
 216
 217 if(nextGridSquare != null) {
 218 if(nextGridSquare.containsFood()) carry(nextGridSquare.getFood());
 219 setGridSquare(nextGridSquare, false);
 220 }
 221
 222
 223
 224
 225 }
 226
 227 public void carry(Food food) {
 228 // System.out.println("Carrying...");
 229 // Grid.getInstance().printStats();
 230
 231 try {
 232 notifyListeners(new PickedUpFoodAntEvent(this));
 233 this.setFood(food);
 234 food.getGridSquare().recalculateFoodStrength(false);
 235 food.getGridSquare().setObject(null);
 236
 237 turnBack();
 238 //setGridSquare(getPreviousGridSquare());
 239
 240 food.setGridSquare(null);
 241
 242
 243 }catch (RuntimeException e) {
 244 // System.out.println("Already gone!");
 245 }
 246 }
 247
 248 public boolean carryingFood() {
 249 return getFood() != null;
 250 }
 251
 252 public void turnBack() {
 253 if(getPreviousGridSquare() != null) {
 254 currentDirection = getGridSquare().getDirectionOf(getPreviousGridSquare());
 255 }
 256 }
 257
 258 public void run() {
 259 //Call the move method while the Thread is running. And sleep for a time based on
iSpeed.
 260 while(move != null) {
 261 try {
 262 move();
 263
 264 move.sleep(200);
 265 }catch (InterruptedException e) {}
 266 }
 267 }
 268
 269 /**
 270 * Start or stop the rectangle moving.
 271 * @param start true to start, false to stop.
 272 */
 273 public void start(boolean start) {
 274 if(start) start(); else stop();
 275 }
 276
 277 /**
 278 * Start the rectangle moving.
 279 */
 280 public void start() {
 281 //Create and start a new Thread.
 282 move = new Thread(this);
 283 // move.setDaemon(true);
 284 move.start();
 285 }
 286

74

 287 public void pause() {
 288 if(move == null) start();
 289 else stop();
 290 }
 291
 292 /**
 293 * Stop the rectangle moving.
 294 */
 295 public void stop() {
 296 move = null;
 297 }
 298
 299
 300 public Color getColor() {
 301 if(food == null)
 302 return color;
 303 else
 304 return Color.YELLOW;
 305 }
 306
 307 public Food getFood() {
 308 return food;
 309 }
 310
 311 public void setFood(Food food) {
 312 this.food = food;
 313 }
 314
 315 public String toString() {
 316 return "Ant"
 317 + getGridSquare().getGridSquares(1).getGridSquaresInDirection(
 318 getGridSquare(), currentDirection).getFreeGridSquares()
 319 + ";direction: " + currentDirection;
 320 }
 321
 322 public void draw(Graphics g) {
 323 super.draw(g);
 324
 325
 326 }
 327
 328 public GridSquare getPreviousGridSquare() {
 329 return previousGridSquare;
 330 }
 331
 332 public void setPreviousGridSquare(GridSquare previousGridSquare) {
 333 this.previousGridSquare = previousGridSquare;
 334 }
 335
 336 public void setGridSquare(GridSquare gridSquare, boolean setDirection) {
 337 if(setDirection)
 338 currentDirection = getGridSquare().getDirectionOf(gridSquare);
 339
 340 setPreviousGridSquare(getGridSquare());
 341 super.setGridSquare(gridSquare);
 342 }
 343
 344 public void setGridSquare(GridSquare gridSquare) {
 345 setGridSquare(gridSquare, false);
 346 }
 347}
 348

75

Food.java

 1/*
 2 * Food.java
 3 *
 4 * Created on 07 October 2006, 15:45
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import java.awt.Color;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public class Food extends MyObject {
 19
 20 private static final Color color = new Color(150, 255, 150);
 21
 22 /** Creates a new instance of Food */
 23 public Food() {
 24 }
 25
 26 public Food(GridSquare s) {
 27 super(s);
 28 }
 29
 30 public Color getColor() {
 31 return color;
 32 }
 33
 34 public String toString() {
 35 return "Food";
 36 }
 37
 38}
 39

76

Grid.java

 1/*
 2 * Grid.java
 3 *
 4 * Created on 07 October 2006, 01:36
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import ants.control.AntControl;
 13import ants.event.AntEvent;
 14import ants.event.AntListener;
 15import ants.event.FoodUpdateEvent;
 16import java.awt.Canvas;
 17import java.awt.Color;
 18import java.awt.Graphics;
 19import java.awt.Point;
 20import java.awt.event.MouseAdapter;
 21import java.awt.event.MouseEvent;
 22import java.awt.image.BufferedImage;
 23import java.util.Vector;
 24
 25/**
 26 *
 27 * @author James Hamilton
 28 */
 29public class Grid extends Canvas implements Runnable {
 30
 31 private GridSquare[][] grid;
 32 private GridVector gridVector;
 33
 34 private BufferedImage bi;
 35 private Graphics big;
 36 private Thread animate;
 37 private Thread resetFoodStrength;
 38
 39 private static Grid singleton = null;
 40 private Vector<MyObject> objects;
 41
 42 private Vector<FoodCluster> foodClusters;
 43
 44 private Nest nest;
 45
 46 private int size = 100;
 47
 48 /** Creates a new instance of Grid */
 49 private Grid(int size) {
 50 this.size = size;
 51 initialise();
 52 }
 53
 54 private void initialise() {
 55 grid = new GridSquare[size][size];
 56 setGridVector(new GridVector());
 57 setSize(size * GridSquare.SIZE, size * GridSquare.SIZE);
 58
 59 for(int x = 0; x < grid.length; x++) {
 60 for(int y = 0; y < grid.length; y++) {
 61
 62 grid[x][y] = new GridSquare();
 63 grid[x][y].setLocation(x * GridSquare.SIZE, y * GridSquare.SIZE);
 64 getGridSquares().add(grid[x][y]);
 65 }
 66
 67 }
 68 bi = new BufferedImage(getWidth(),getHeight(),BufferedImage.TYPE_INT_RGB);
 69 big = bi.createGraphics();
 70
 71 setNest(new Nest(grid[20][20]));
 72
 73 objects = new Vector<MyObject>();
 74 objects.add(getNest());
 75

77

 76
 77
 78 setFoodClusters(new Vector<FoodCluster>());
 79
 80 animate = null;
 81 animate = new Thread(this);
 82 animate.start();
 83
 84 addMouseListener(new MouseAdapter() {
 85 public void mouseClicked(MouseEvent e) {
 86 System.out.println(getGridSquareAt(e.getX(), e.getY()));
 87 }
 88 });
 89
 90 addAntListener(AntControl.getInstance());
 91 }
 92
 93 private Vector<AntListener> listeners = new Vector<AntListener>();
 94
 95 public void addAntListener(AntListener listener) {
 96 listeners.add(listener);
 97 }
 98
 99 public void notifyListeners(AntEvent e) {
 100 for(AntListener listener : listeners)
 101 listener.antEventHandler(e);
 102 }
 103
 104 public synchronized static Grid getInstance(int n) {
 105 if(singleton == null)
 106 singleton = new Grid(n);
 107 return singleton;
 108 }
 109
 110 public synchronized static Grid getInstance() {
 111 if(singleton == null)
 112 singleton = new Grid(100);
 113 return singleton;
 114 }
 115
 116 public void reset() {
 117 initialise();
 118 }
 119
 120 public void recalculateFoodStrengths() {
 121 for(GridSquare gs : getGridSquares()) {
 122 gs.recalculateFoodStrength();
 123 }
 124 }
 125
 126 public void setFoodStrengthRadius(int radius) {
 127 for(FoodCluster cluster : foodClusters) {
 128 cluster.setStrengthRadius(radius);
 129 }
 130 }
 131
 132 public void resetFoodStrengths() {
 133 recalculateFoodStrengths();
 134 }
 135
 136 public synchronized GridSquare getGridSquare(int x, int y) throws Exception {
 137 try {
 138 return grid[x][y];
 139 }catch (ArrayIndexOutOfBoundsException e) {
 140 throw new Exception("Invalid Square");
 141 }
 142 }
 143
 144 public GridSquare getGridSquare(Point p) throws Exception {
 145 return getGridSquare(p.x, p.y);
 146 }
 147
 148 public GridSquare getGridSquareAt(int x, int y) {
 149 for(GridSquare gs : gridVector) {
 150 if(gs.contains(x, y)) return gs;
 151 }
 152 return null;

78

 153 }
 154
 155 public Vector<MyObject> getObjects() {
 156 return objects;
 157 }
 158
 159 public void addObject(MyObject object) {
 160 objects.add(object);
 161 }
 162
 163 public void populate(int n) {
 164
 165
 166 }
 167
 168 public void populateWithFood(int n) {
 169
 170 for(int j = 0; j < n; j++) {
 171
 172 boolean stop = false;
 173
 174 while(!stop) {
 175
 176 int x = (int)(Math.random() * grid.length);
 177 int y = (int)(Math.random() * grid.length);
 178
 179 if(grid[x][y].empty()) {
 180
 181 int size = (int)(Math.random() * 5) + 1;
 182
 183 try {
 184 addFoodCluster(x, y, size);
 185 }catch (Exception e) {
 186 //no such gridsquare
 187 }
 188
 189
 190 stop = true;
 191 }
 192 }
 193 }
 194
 195 this.notifyListeners(new FoodUpdateEvent(this));
 196 }
 197
 198 public void addFoodCluster(int x, int y, int radius) throws Exception {
 199
 200 getGridSquare(x, y).getGridSquares(radius, true).getFreeGridSquares().addFood();
 201
 202 notifyListeners(new FoodUpdateEvent(this));
 203 }
 204
 205 public void addObstacleCluster(int x, int y, int radius) throws Exception {
 206 getGridSquare(x, y).getGridSquares(radius, true).addObstacles();
 207 }
 208
 209 public void populateWithObstacles(int n) {
 210
 211 for(int j = 0; j < n; j++) {
 212
 213 boolean stop = false;
 214
 215 while(!stop) {
 216
 217 int x = (int)(Math.random() * grid.length);
 218 int y = (int)(Math.random() * grid.length);
 219
 220 if(grid[x][y].empty()) {
 221 try {
 222 addObstacleCluster(x, y, 3);
 223 }catch (Exception e) {
 224 //no such gridsquare
 225 }
 226
 227
 228 stop = true;
 229 }

79

 230 }
 231 }
 232
 233 for(int x = 0; x < grid.length; x++) {
 234 try {
 235 Obstacle obstacle = new Obstacle(getGridSquare(x, 0));
 236 objects.add(obstacle);
 237 getGridSquare(x, 0).setObject(obstacle);
 238
 239 Obstacle obstacle1 = new Obstacle(getGridSquare(x, grid.length-1));
 240 objects.add(obstacle1);
 241 getGridSquare(x,grid.length-1).setObject(obstacle1);
 242
 243 }catch (Exception e) {
 244 //
 245 }
 246 }
 247
 248 for(int y = 0; y < grid.length; y++) {
 249 try {
 250 Obstacle obstacle = new Obstacle(getGridSquare(0, y));
 251 objects.add(obstacle);
 252 getGridSquare(0, y).setObject(obstacle);
 253
 254 Obstacle obstacle1 = new Obstacle(getGridSquare(grid.length-1, y));
 255 objects.add(obstacle1);
 256 getGridSquare(grid.length-1,y).setObject(obstacle1);
 257
 258 }catch (Exception e) {
 259 //
 260 }
 261 }
 262
 263
 264 }
 265
 266
 267 public int countAnts() {
 268 int count = 0;
 269 for(int x = 0; x < grid.length; x++) {
 270 for(int y = 0; y < grid.length; y++) {
 271 if(grid[x][y].containsAnt()) count++;
 272 }
 273 }
 274 return count;
 275 }
 276
 277 public int countCarriedFood() {
 278 int count = 0;
 279 for(int x = 0; x < grid.length; x++) {
 280 for(int y = 0; y < grid.length; y++) {
 281 if(grid[x][y].containsAnt() && grid[x][y].getAnt().carryingFood()) count++;
 282 }
 283 }
 284 return count;
 285 }
 286
 287 public int countNests() {
 288 int count = 0;
 289 for(int x = 0; x < grid.length; x++) {
 290 for(int y = 0; y < grid.length; y++) {
 291 if(grid[x][y].isNest()) count++;
 292 }
 293 }
 294 return count;
 295 }
 296
 297
 298
 299 public void setAntAt(Ant ant, int x, int y) {
 300 grid[x][y].setAnt(ant);
 301 }
 302
 303
 304 public void paint(Graphics g) {
 305 update(g);
 306 }

80

 307
 308 public void update(Graphics g) {
 309 clear();
 310
 311 for(GridSquare object : gridVector) {
 312
 313 object.draw(big);
 314
 315 }
 316
 317 g.drawImage(bi, 0, 0, this);
 318 }
 319
 320 public void clear() {
 321 big.setColor(Color.black);
 322 big.fillRect(0,0,getWidth(),getHeight());
 323 }
 324
 325 public void run() {
 326 while(animate!=null) {
 327
 328 try {
 329 animate.sleep(300);
 330
 331
 332 Thread.yield();
 333 //printStats();
 334
 335 repaint();
 336 }catch (Exception e) {
 337 System.out.println(e);
 338 }
 339
 340 }
 341 big.dispose();
 342 }
 343
 344
 345 public void printStats() {
 346 System.out.print(countAnts() + " ants. ");
 347 System.out.print(countCarriedFood() + " carrying food");
 348 System.out.println();
 349 }
 350
 351 public Nest getNest() {
 352 return nest;
 353 }
 354
 355 public void setNest(Nest nest) {
 356 this.nest = nest;
 357 }
 358
 359 public Vector<FoodCluster> getFoodClusters() {
 360 return foodClusters;
 361 }
 362
 363 public void setFoodClusters(Vector<FoodCluster> foodClusters) {
 364 this.foodClusters = foodClusters;
 365 }
 366
 367 public GridVector getGridSquares() {
 368 return gridVector;
 369 }
 370
 371 public GridVector getGridSquaresWithFood() {
 372 return getGridSquares().getFoodGridSquares();
 373 }
 374
 375 public int countFood() {
 376 return getGridSquaresWithFood().size();
 377 }
 378
 379 public void setGridVector(GridVector gridVector) {
 380 this.gridVector = gridVector;
 381 }
 382}
 383

81

AntSimulator.java

 1/*

 2 * AntSimulator.java
 3 *
 4 * Created on 07 October 2006, 01:43
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12
 13import ants.control.AntControl;
 14import java.awt.BorderLayout;
 15import java.awt.Dimension;
 16import java.awt.event.ActionEvent;
 17import java.awt.event.ActionListener;
 18import java.awt.event.MouseAdapter;
 19import java.awt.event.MouseEvent;
 20import javax.swing.JApplet;
 21import javax.swing.JButton;
 22import javax.swing.JFrame;
 23import javax.swing.JPanel;
 24
 25/**
 26 *
 27 * @author James Hamilton
 28 */
 29public class AntSimulator extends JApplet {
 30
 31 private Grid grid;
 32
 33 /** Creates a new instance of AntSimulator */
 34 public AntSimulator(int size) {
 35
 36 initialise();
 37
 38 int r = (int)(Math.random() * Math.sqrt(8)) * (int)(Math.random() *Math.sqrt(8));
 39 System.out.println(r);
 40
 41
 42 setVisible(true);
 43 }
 44
 45 public void initialise() {
 46 grid = Grid.getInstance(100);
 47 grid.reset();
 48 setSize(getSize());
 49
 50 getContentPane().remove(grid);
 51 getContentPane().add(grid, BorderLayout.CENTER);
 52
 53 grid.getNest().addAnts(8);
 54
 55 grid.populateWithObstacles(0);
 56 //grid.populateWithFood(5);
 57 try {
 58 grid.addFoodCluster(80, 20, 3);//7
 59 grid.addObstacleCluster(50, 21, 4);
 60 grid.addObstacleCluster(50, 22, 4);
 61 grid.addObstacleCluster(50, 23, 4);
 62 // grid.addFoodCluster(30, 80, 3);
 63 }catch (Exception e) {
 64 //no such grid square.
 65 }
 66
 67 Grid.getInstance().resetFoodStrengths();
 68
 69 }
 70
 71 public AntSimulator() {
 72 this(100);
 73 }

82

 74
 75 public Dimension getSize() {
 76 return grid.getSize();
 77 }
 78
 79 public static void main(String[] args) {
 80 java.awt.EventQueue.invokeLater(new Runnable() {
 81 public void run() {
 82 JFrame f = new JFrame("Ant Simulator");
 83 final AntSimulator m = new AntSimulator(100);
 84 f.add(m);
 85 f.setSize((int)m.getSize().getWidth() + 13, (int)m.getSize().getHeight() + 35);
 86 f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 87 f.setResizable(false);
 88 f.setVisible(true);
 89
 90 AntControl.getInstance().setVisible(true);
 91 }
 92 });
 93
 94
 95
 96 }
 97}
 98

83

GridSquare.java

 1/*

 2 * GridSquare.java
 3 *
 4 * Created on 07 October 2006, 01:37
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import java.awt.Color;
 13import java.awt.Graphics;
 14import java.awt.Graphics2D;
 15import java.awt.Point;
 16import java.awt.Rectangle;
 17import java.util.Comparator;
 18import java.util.Vector;
 19import java.lang.Double;
 20
 21/**
 22 *
 23 * @author James Hamilton
 24 */
 25public class GridSquare extends Rectangle implements Comparable<GridSquare> {
 26
 27 public static final int SIZE = 4;
 28
 29 private MyObject object = null;
 30 private Ant ant = null;
 31 private Pheromone pheromone = null;
 32
 33 private double foodStrength = 0;
 34
 35
 36 public static final int
 37 NORTH = 1, NORTHEAST = 2, EAST = 3, SOUTH = 4, SOUTHEAST = 5, WEST = 6, NORTHWEST = 7,
SOUTHWEST = 8;
 38
 39 public static final int LAST_DIRECTION = SOUTHWEST;
 40 public static final int FIRST_DIRECTION = NORTH;
 41
 42 /** Creates a new instance of GridSquare */
 43 public GridSquare() {
 44 setSize(SIZE, SIZE);
 45 //pheromone = new Pheromone(this);
 46 }
 47
 48 public Point getCoordinateXY() {
 49 return new Point(x / SIZE, y / SIZE);
 50 }
 51
 52 public GridSquare getGridSquare(int direction) {
 53 try {
 54 Point p = getCoordinateXY();
 55 int x = -1, y = -1;
 56
 57 switch(direction) {
 58 case EAST: x = p.x + 1; y = p.y; break;
 59 case NORTH: x = p.x; y = p.y - 1; break;
 60 case WEST: x = p.x - 1; y = p.y; break;
 61 case SOUTH: x = p.x; y = p.y + 1; break;
 62 case SOUTHEAST: x = p.x + 1; y = p.y + 1; break;
 63 case SOUTHWEST: x = p.x - 1; y = p.y + 1; break;
 64 case NORTHEAST: x = p.x + 1; y = p.y - 1; break;
 65 case NORTHWEST: x = p.x - 1; y = p.y - 1; break;
 66 }
 67
 68
 69 return Grid.getInstance().getGridSquare(x, y);
 70 }catch (Exception e) {
 71 System.out.println(direction +": " + getCoordinateXY() +" - " + e);
 72 return null;

84

 73 }
 74 }
 75
 76 public GridVector getGridSquaresInDirection(int direction) {
 77 GridVector v = new GridVector();
 78 v.add(getGridSquare(direction));
 79 v.add(getGridSquare(getPreviousDirection(direction)));
 80 v.add(getGridSquare(getNextDirection(direction)));
 81 return v;
 82 }
 83
 84 public GridSquare getGridSquare() {
 85 return getGridSquare(GridSquare.getRandomDirection());
 86 }
 87
 88 public static int getRandomDirection() {
 89 return (int)(Math.random() * LAST_DIRECTION) + 1;
 90 }
 91
 92 public static int getOppositeDirection(int direction) {
 93 switch(direction) {
 94 case EAST: return WEST;
 95 case NORTH: return SOUTH;
 96 case WEST: return EAST;
 97 case SOUTH: return NORTH;
 98 case SOUTHEAST: return NORTHWEST;
 99 case SOUTHWEST: return NORTHEAST;
 100 case NORTHEAST: return SOUTHWEST;
 101 case NORTHWEST: return SOUTHEAST;
 102 }
 103 return -1;
 104 }
 105
 106 public GridVector getGridSquares(int radius) {
 107 return getGridSquares(radius, false);
 108 }
 109
 110 public GridVector getGridSquares(int radius, boolean center) {
 111 GridVector squares = new GridVector();
 112 Point p = getCoordinateXY();
 113
 114 for(int x = -radius; x <= radius; x++) {
 115
 116 int z;
 117
 118
 119 z = (int)(Math.sqrt(Math.pow(radius, 2) - Math.pow(x, 2)));
 120
 121 for(int y = -z; y <= z; y++) {
 122
 123 try {
 124 if(x == 0 && y == 0 && !center) continue;
 125 squares.add(Grid.getInstance().getGridSquare(p.x + x, p.y + y));
 126
 127
 128 } catch (Exception ex) {
 129
 130 }
 131
 132 }
 133
 134 }
 135
 136 if(radius == 1) {
 137 try {
 138
 139 squares.add(Grid.getInstance().getGridSquare(p.x - 1, p.y - 1));
 140 squares.add(Grid.getInstance().getGridSquare(p.x + 1, p.y + 1));
 141 squares.add(Grid.getInstance().getGridSquare(p.x + 1, p.y - 1));
 142 squares.add(Grid.getInstance().getGridSquare(p.x - 1, p.y + 1));
 143
 144 } catch (Exception ex) {
 145
 146 }
 147
 148 }
 149

85

 150 return squares;
 151 }
 152
 153 public int getDirectionOf(GridSquare gs) {
 154 Point thisP = getCoordinateXY();
 155 Point otherP = gs.getCoordinateXY();
 156
 157 int x = otherP.x - thisP.x;
 158 int y = otherP.y - thisP.y;
 159
 160 if(otherP.x == thisP.x && otherP.y < thisP.y) {
 161 return NORTH;
 162 }else if(otherP.x == thisP.x && otherP.y > thisP.y) {
 163 return SOUTH;
 164 }else if(otherP.y == thisP.y && otherP.x < thisP.x) {
 165 return WEST;
 166 }else if(otherP.y == thisP.y && otherP.x > thisP.x) {
 167 return EAST;
 168// }else if(otherP.x == thisP.x && otherP.y > thisP.y) {
 169// return EAST;
 170 }else if(otherP.x < thisP.x && otherP.y < thisP.y) {
 171 return NORTHWEST;
 172 }else if(otherP.x > thisP.x && otherP.y < thisP.y) {
 173 return NORTHEAST;
 174 }else if(otherP.x > thisP.x && otherP.y > thisP.y) {
 175 return SOUTHEAST;
 176 }else if(otherP.x < thisP.x && otherP.y > thisP.y) {
 177 return SOUTHWEST;
 178 }else{
 179 System.out.println("thisP: " + thisP + ", otherP:" + otherP);
 180
 181 }
 182
 183 return -1;
 184 }
 185
 186 public Vector<GridSquare> getEmptyGridSquares(int radius) {
 187 Vector<GridSquare> squares = new Vector<GridSquare>();
 188 Point p = getCoordinateXY();
 189
 190 for(int x = -radius; x <= radius; x++) {
 191
 192 int z;
 193
 194
 195 z = (int)(Math.sqrt(Math.pow(radius, 2) - Math.pow(x, 2)));
 196
 197 for(int y = -z; y <= z; y++) {
 198
 199 try {
 200
 201 if(Grid.getInstance().getGridSquare(p.x + x, p.y + y).isEmpty())
 202 squares.add(Grid.getInstance().getGridSquare(p.x + x, p.y + y));
 203
 204
 205 } catch (Exception ex) {
 206
 207 }
 208
 209 }
 210
 211 }
 212
 213 if(radius == 1) {
 214 try {
 215
 216 squares.add(Grid.getInstance().getGridSquare(p.x - 1, p.y - 1));
 217 squares.add(Grid.getInstance().getGridSquare(p.x + 1, p.y + 1));
 218 squares.add(Grid.getInstance().getGridSquare(p.x + 1, p.y - 1));
 219 squares.add(Grid.getInstance().getGridSquare(p.x - 1, p.y + 1));
 220
 221 } catch (Exception ex) {
 222
 223 }
 224
 225 }
 226

86

 227 return squares;
 228 }
 229
 230 public static int getNextDirection(int direction) {
 231
 232 int newDirection = direction == LAST_DIRECTION ? FIRST_DIRECTION : direction + 1;
 233
 234 return newDirection;
 235 }
 236
 237 public static int getPreviousDirection(int direction) {
 238
 239 int newDirection = direction == FIRST_DIRECTION ? LAST_DIRECTION : direction - 1;
 240
 241 return newDirection;
 242 }
 243
 244 public void draw(Graphics g) {
 245 Graphics2D g2d = (Graphics2D)g;
 246
 247 int green = (int)(foodStrength * 75) < 255 ? (int)(foodStrength * 75) : 255;
 248
 249
 250 Color old = g2d.getColor();
 251 if(foodStrength >0 && green >= 0) {
 252
 253 g2d.setColor(new Color(0, green, 0));
 254
 255 g2d.fill(this);
 256
 257 g2d.draw(this);
 258 g2d.setColor(old);
 259 }
 260
 261 if(pheromone != null && pheromone.getStrength() != 0) {
 262 pheromone.draw(g);
 263 }
 264
 265 if(object != null) {
 266 object.draw(g);
 267 }
 268
 269
 270 g2d.setColor(old);
 271
 272 }
 273
 274 public boolean empty() {
 275 return object == null && getAnt() == null;
 276 }
 277
 278 public MyObject getObject() {
 279 return object;
 280 }
 281
 282 public void setObject(MyObject o) {
 283 if(o instanceof Pheromone) {
 284 setPheromone((Pheromone)o);
 285 return;
 286 }
 287
 288 if(!isNest() && !(object instanceof Obstacle))
 289 object = o;
 290
 291 if(o instanceof Obstacle) {
 292 setFoodStrength(0);
 293 getPheromone().setStrength(0);
 294 }
 295 }
 296
 297 public Ant getAnt() {
 298 return object instanceof Ant ? (Ant)object : null;
 299 }
 300
 301 public boolean containsAnt() {
 302 return !empty() && object instanceof Ant;
 303 }

87

 304
 305 public void setAnt(Ant ant) {
 306 this.object = ant;
 307 this.ant = ant;
 308 }
 309
 310 public Food getFood() {
 311 return object instanceof Food ? (Food)object : null;
 312 }
 313
 314 public Obstacle getObstacle() {
 315 return object instanceof Obstacle ? (Obstacle)object : null;
 316 }
 317
 318 public boolean containsFood() {
 319 return getFood() != null;
 320 }
 321
 322 public boolean containsObstacle() {
 323 return getObstacle() != null;
 324 }
 325
 326 public void setFood(Food food) {
 327 this.object = food;
 328 }
 329
 330 public boolean isNest() {
 331 return object != null && object instanceof Nest;
 332 }
 333
 334 public Pheromone getPheromone() {
 335 if(pheromone == null) pheromone = new Pheromone(this);
 336 return pheromone;
 337 }
 338
 339 public double getPheromoneStrength() {
 340 return pheromone == null ? 0 : getPheromone().getStrength();
 341 }
 342
 343 public void setPheromone(Pheromone pheromone) {
 344 this.pheromone = pheromone;
 345 }
 346
 347 public synchronized double getFoodStrength() {
 348 return foodStrength;
 349 }
 350
 351 public void recalculateFoodStrength() {
 352
 353 recalculateFoodStrength(true);
 354 }
 355
 356 public void recalculateFoodStrength(boolean add) {
 357
 358 if(getFood() == null) return;
 359
 360 Point thisP = getCoordinateXY();
 361
 362 int radius = 15;
 363
 364 GridVector surroundingSquares = this.getGridSquares(radius);
 365
 366 for(GridSquare gs : surroundingSquares) {
 367
 368 Point p = gs.getCoordinateXY();
 369
 370 double c2 = Math.pow(thisP.x - p.x , 2) + Math.pow(thisP.y - p.y , 2);
 371
 372 double newStrength = gs.getFoodStrength();
 373
 374 if(add) {
 375 newStrength += 1 / c2;
 376 }else{
 377 newStrength -= (1 / c2) + 0.0000001;
 378
 379 }
 380

88

 381 gs.setFoodStrength(newStrength);
 382
 383 }
 384
 385
 386 }
 387
 388
 389 public synchronized void setFoodStrength(double foodStrength) {
 390
 391 if(foodStrength < 0) foodStrength = 0;
 392 this.foodStrength = foodStrength;
 393 }
 394
 395 public int compareTo(GridSquare gs) {
 396 return FoodStrengthComparator.compare(this, gs);
 397 }
 398
 399 public static Comparator<GridSquare> FoodStrengthComparator = new Comparator<GridSquare>() {
 400 public int compare(GridSquare gs1, GridSquare gs2) {
 401 return gs1.getFoodStrength() > gs2.getFoodStrength() ? -1 : 1;
 402 }
 403 };
 404
 405 public static Comparator<GridSquare> PheromoneStrengthComparator = new
Comparator<GridSquare>() {
 406 public int compare(GridSquare gs1, GridSquare gs2) {
 407 double pheromoneStrength1 = gs1.getPheromone() != null ?
gs1.getPheromone().getStrength() : 0;
 408 double pheromoneStrength2 = gs2.getPheromone() != null ?
gs2.getPheromone().getStrength() : 0;
 409 return java.lang.Double.compare(pheromoneStrength1, pheromoneStrength2);
 410 }
 411 };
 412
 413 public String toString() {
 414 Point p = this.getCoordinateXY();
 415 String s = "";
 416 s += getPheromone().toString();
 417 return s;
 418 }
 419
 420
 421}
 422

89

MyObject.java

 1/*

 2 * MyObject.java
 3 *
 4 * Created on 12 October 2006, 22:50
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import java.awt.Graphics;
 13import java.awt.Graphics2D;
 14import java.awt.Rectangle;
 15import java.awt.event.MouseListener;
 16
 17/**
 18 *
 19 * @author James Hamilton
 20 */
 21public abstract class MyObject extends Rectangle implements MyObjectInterface {
 22
 23 private GridSquare gridSquare;
 24
 25 /** Creates a new instance of MyObject */
 26 public MyObject() {
 27 setSize(GridSquare.SIZE, GridSquare.SIZE);
 28 }
 29
 30 public MyObject(GridSquare s) {
 31 setGridSquare(s);
 32 setSize(s.getSize());
 33 setLocation(s.getLocation());
 34 }
 35
 36 public void draw(Graphics g) {
 37
 38 Graphics2D g2d = (Graphics2D)g;
 39
 40 g2d.setColor(getColor());
 41
 42 g2d.fill(this);
 43
 44 g2d.draw(this);
 45 }
 46
 47 public GridSquare getGridSquare() {
 48 return gridSquare;
 49 }
 50
 51 public void setGridSquare(GridSquare gridSquare) {
 52 if(this.gridSquare != null) this.gridSquare.setObject(null);
 53 this.gridSquare = gridSquare;
 54
 55 if(gridSquare == null) {
 56 setLocation(-99, -99);
 57
 58 }else{
 59 setLocation(gridSquare.getLocation());
 60// if(this instanceof Ant)
 61// gridSquare.setAnt((Ant)this);
 62// else
 63 gridSquare.setObject(this);
 64 }
 65 }
 66}
 67

90

GridVector.java

 1/*

 2 * GridVector.java
 3 *
 4 * Created on 24 November 2006, 17:55
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class GridVector extends java.util.Vector<GridSquare> {
 17
 18 /** Creates a new instance of GridVector */
 19 public GridVector() {
 20 super();
 21 }
 22
 23 public double getFoodStrength() {
 24 double sum = 0;
 25 for(GridSquare gs : this)
 26 sum += gs.getFoodStrength();
 27 return sum;
 28 }
 29
 30 public double getPheromoneStrength() {
 31 double sum = 0;
 32 for(GridSquare gs : this)
 33 sum += gs.getPheromoneStrength();
 34 return sum;
 35 }
 36
 37 public int getPheromoneStrength(int direction) {
 38 int sum = 0;
 39 for(GridSquare gs : this)
 40 if(gs.getPheromone().getDirection() == direction)
 41 sum += gs.getPheromoneStrength();
 42 return sum;
 43 }
 44
 45 public boolean containsFood() {
 46 return getFoodGridSquares().size() != 0;
 47 }
 48
 49 public GridVector getGridSquaresInDirection(GridSquare gs1, int direction) {
 50 GridVector gridVector = new GridVector();
 51 for(GridSquare gs : this)
 52 if(gs1.getDirectionOf(gs) == direction ||
 53 gs1.getDirectionOf(gs) == GridSquare.getPreviousDirection(direction) ||
 54 gs1.getDirectionOf(gs) == GridSquare.getNextDirection(direction))
 55 gridVector.add(gs);
 56 return gridVector;
 57 }
 58
 59 public GridVector getFoodGridSquares() {
 60 GridVector gridVector = new GridVector();
 61 for(GridSquare gs : this)
 62 if(gs.containsFood())
 63 gridVector.add(gs);
 64 return gridVector;
 65 }
 66
 67 public GridVector getFoodStrengthGridSquares() {
 68 GridVector gridVector = new GridVector();
 69 for(GridSquare gs : this)
 70 if(gs.getFoodStrength() > 0)
 71 gridVector.add(gs);
 72 return gridVector;
 73 }

91

 74
 75 public boolean containsNest() {
 76 GridVector gridVector = new GridVector();
 77 for(GridSquare gs : this)
 78 if(gs.isNest())
 79 return true;
 80 return false;
 81 }
 82
 83 public GridVector getPheromoneGridSquares() {
 84 GridVector gridVector = new GridVector();
 85 for(GridSquare gs : this)
 86 if(gs.getPheromoneStrength() > 0)
 87 gridVector.add(gs);
 88 return gridVector;
 89 }
 90
 91 public GridVector getPheromoneGridSquares(int direction) {
 92 GridVector gridVector = new GridVector();
 93 for(GridSquare gs : this)
 94 if(gs.getPheromoneStrength() > 0 && gs.getPheromone().getDirection() == direction)
 95 gridVector.add(gs);
 96 return gridVector;
 97 }
 98
 99 public GridVector getPheromoneGridSquares(int direction, Ant ant) {
 100 GridVector gridVector = new GridVector();
 101 for(GridSquare gs : this)
 102 if(gs.getPheromoneStrength() > 0 &&
 103 gs.getPheromone().getDirection() == direction &&
 104 gs.getPheromone().laidBy(ant))
 105 gridVector.add(gs);
 106 return gridVector;
 107 }
 108
 109 public GridSquare getGridSquare(Ant ant) {
 110 for(GridSquare gs : this)
 111 if(gs.getPheromoneStrength() > 0 && gs.getPheromone().laidBy(ant))
 112 return gs;
 113 return null;
 114 }
 115
 116 public GridVector getPheromoneGridSquares(Ant ant, boolean own) {
 117 GridVector gridVector = new GridVector();
 118 if(own) {
 119 for(GridSquare gs : this)
 120 if(gs.getPheromoneStrength() > 0 && gs.getPheromone().laidBy(ant))
 121 gridVector.add(gs);
 122 }else{
 123 for(GridSquare gs : this)
 124 if(gs.getPheromoneStrength() > 0 && !gs.getPheromone().laidBy(ant))
 125 gridVector.add(gs);
 126
 127 }
 128 return gridVector;
 129 }
 130
 131 public GridVector getPheromoneGridSquares(Ant ant) {
 132 return getPheromoneGridSquares(ant, true);
 133 }
 134
 135 public GridVector getFreeGridSquares() {
 136 GridVector gridVector = new GridVector();
 137
 138 for(GridSquare gs : this)
 139 if(!gs.containsObstacle() && !gs.containsAnt())
 140 gridVector.add(gs);
 141 return gridVector;
 142 }
 143
 144 public GridVector getEmptyGridSquares() {
 145 GridVector gridVector = new GridVector();
 146 for(GridSquare gs : this)
 147 if(gs.getObject() == null || gs.isNest())
 148 gridVector.add(gs);
 149 return gridVector;
 150 }

92

 151
 152 public GridVector getGridSquaresWithoutNest() {
 153 GridVector gridVector = new GridVector();
 154 for(GridSquare gs : this)
 155 if(!gs.isNest())
 156 gridVector.add(gs);
 157 return gridVector;
 158 }
 159
 160 public GridSquare getRandomGridSquare() {
 161 return elementAt((int)(Math.random() * size()));
 162 }
 163
 164 public GridSquare getRandomGridSquare(boolean bias) {
 165 return elementAt((int)(Math.random() * Math.sqrt(size())) * (int)(Math.random()
*Math.sqrt(size())));
 166 }
 167
 168 public GridSquare getMiddleGridSquare() {
 169 return elementAt((int)Math.floor(size() / 2));
 170 }
 171
 172 public GridSquare firstElementNot(GridSquare otherGS) {
 173
 174 for(GridSquare gs : this)
 175 if(!gs.equals(otherGS))
 176 return gs;
 177 return firstElement();
 178 }
 179
 180 public void addObstacles() {
 181 for(GridSquare gs : this)
 182 gs.setObject(new Obstacle(gs));
 183 }
 184
 185 public void addFood() {
 186 for(GridSquare gs : this)
 187 gs.setObject(new Food(gs));
 188 }
 189}
 190

93

MyObjectInterface.java

 1/*
 2 * MyObject.java
 3 *
 4 * Created on 09 October 2006, 00:39
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import java.awt.Color;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public interface MyObjectInterface {
 19 public Color getColor();
 20}
 21

94

Nest.java

 1/*
 2 * Nest.java
 3 *
 4 * Created on 13 October 2006, 22:47
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import ants.control.AntControl;
 13import ants.event.EnterNestAntEvent;
 14import ants.event.ExitNestAntEvent;
 15import ants.event.NewAntEvent;
 16import java.awt.Color;
 17import java.util.Vector;
 18
 19/**
 20 *
 21 * @author James Hamilton
 22 */
 23public class Nest extends MyObject implements Runnable {
 24
 25 private Vector<Ant> ants = new Vector<Ant>();
 26 private Vector<Food> food = new Vector<Food>();
 27
 28 private int totalAnts = 0;
 29
 30 private Thread move;
 31
 32 /** Creates a new instance of Nest */
 33 public Nest() {
 34
 35 }
 36
 37 public Nest(GridSquare gs) {
 38 setGridSquare(gs);
 39 move = new Thread(this);
 40 move.setDaemon(true);
 41 move.start();
 42 }
 43
 44 public Nest(int n, GridSquare gs) {
 45 this(gs);
 46 addAnts(n);
 47
 48 totalAnts = n;
 49 }
 50
 51 public void addAnt() {
 52 Ant ant = new Ant(getGridSquare());
 53 ants.add(ant);
 54 ant.addAntListener(AntControl.getInstance());
 55 ant.notifyListeners(new NewAntEvent(ant));
 56 totalAnts++;
 57 AntControl.getInstance().setTotalAnts(totalAnts);
 58 }
 59
 60 public void addAnts(int n) {
 61 for(int i = 0; i < n; i++)
 62 addAnt();
 63 }
 64
 65 public void releaseAnt() {
 66 if(ants.size() != 0) {
 67 // System.out.println("Releasing Ant..");
 68
 69 Vector<GridSquare> surroundingSquares =
getGridSquare().getGridSquares(1).getFreeGridSquares();
 70
 71 // int n = (int)(surroundingSquares.size() * Math.random());
 72
 73
 74 Ant ant = ants.remove(0);

95

 75 // ant.setGridSquare(surroundingSquares.elementAt(n));
 76 // surroundingSquares.elementAt(n).setAnt(ant);
 77 ant.start();
 78 ant.notifyListeners(new ExitNestAntEvent(ant));
 79
 80 }
 81 }
 82
 83 public void addAnt(Ant ant) {
 84 food.add(ant.getFood());
 85 ant.setFood(null);
 86 ants.add(ant);
 87 System.out.println("ANT Returned to NEST");
 88 ant.stop();
 89 ant.notifyListeners(new EnterNestAntEvent(ant));
 90 }
 91
 92 public void run() {
 93
 94 while(move != null) {
 95 try {
 96
 97 releaseAnt();
 98 // System.out.println(ants.size() + " ants in nest");
 99 move.sleep((int)(10000 * Math.random()) + 1);
 100 }catch (InterruptedException e) {}
 101 }
 102 }
 103
 104
 105 public Vector<Ant> getAnts() {
 106 return ants;
 107
 108 }
 109
 110 public Color getColor() {
 111 return Color.LIGHT_GRAY;
 112 }
 113
 114 public String toString() {
 115 return "Nest";
 116 }
 117
 118 public int getTotalAnts() {
 119 return totalAnts;
 120 }
 121}
 122

96

Obstacle.java

 1/*
 2 * Obstacle.java
 3 *
 4 * Created on 15 October 2006, 18:49
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import java.awt.Color;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public class Obstacle extends MyObject {
 19
 20 /** Creates a new instance of Obstacle */
 21 public Obstacle(GridSquare gs) {
 22 super(gs);
 23 }
 24
 25 public Color getColor() {
 26 return Color.PINK;
 27 }
 28}
 29

97

Pheromone.java

 1/*
 2 * Pheromone.java
 3 *
 4 * Created on 15 October 2006, 23:31
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12import ants.PheromoneParticle;
 13import java.awt.Color;
 14import java.awt.Point;
 15import java.util.HashMap;
 16import java.util.Vector;
 17
 18/**
 19 *
 20 * @author James Hamilton
 21 */
 22public class Pheromone extends MyObject implements Runnable {
 23
 24
 25 private Vector<PheromoneParticle> particles = new Vector<PheromoneParticle>();
 26
 27
 28 private double strength = 0;
 29 private Thread move;
 30 private int rate = 90000;
 31 private boolean go = true;
 32 private int maxStrength = 3;
 33
 34 private int direction = -1;
 35
 36 public static final int AWAY_FROM_NEST = 1;
 37 public static final int TOWARD_NEST = 2;
 38
 39 /** Creates a new instance of Pheromone */
 40 public Pheromone() {
 41 setStrength(0);
 42 move = new Thread(this);
 43 move.setDaemon(true);
 44 move.start();
 45 }
 46
 47 public Pheromone(GridSquare gs) {
 48 super(gs);
 49 move = new Thread(this);
 50 move.setDaemon(true);
 51 move.start();
 52 setStrength(0);
 53
 54 }
 55
 56 public void run() {
 57 while(direction != -1) {
 58
 59 try {
 60
 61 move.sleep(rate);//strength * 1000);
 62 if(particles.size() > 0) particles.remove(0);
 63
 64 }catch (InterruptedException e) {
 65 System.out.println(e);
 66 }
 67
 68 }
 69 }
 70
 71
 72 public void increaseStrength(Ant ant, int direction) {
 73 particles.add(new PheromoneParticle(ant, direction));
 74 }
 75

98

 76
 77
 78 public void increaseStrength(int direction) {
 79 strength += 0.5;
 80 Point thisP = getGridSquare().getCoordinateXY();
 81 GridVector squares = getGridSquare().getGridSquares(5);
 82 for(GridSquare s : squares) {
 83 Point p = s.getCoordinateXY();
 84 double c2 = Math.pow(thisP.x - p.x , 2) + Math.pow(thisP.y - p.y , 2);
 85
 86 s.getPheromone().increaseStrength(1/(c2*500));
 87 }
 88
 89 if(strength > maxStrength) strength = maxStrength;
 90 }
 91
 92 public void increaseStrength() {
 93
 94 strength += 0.5;
 95 Point thisP = getGridSquare().getCoordinateXY();
 96
 97 GridVector squares = getGridSquare().getGridSquares(5);
 98 for(GridSquare s : squares) {
 99 Point p = s.getCoordinateXY();
 100 double c2 = Math.pow(thisP.x - p.x , 2) + Math.pow(thisP.y - p.y , 2);
 101
 102 s.getPheromone().increaseStrength(1/(c2*500));
 103 }
 104
 105 if(strength > maxStrength) strength = maxStrength;
 106 }
 107
 108 public void increaseStrength(double n) {
 109
 110 strength += n;
 111 if(strength > maxStrength) strength = maxStrength;
 112 }
 113
 114 public Color getColor() {
 115
 116 int direction = getDirection();
 117 if(direction == -1) {
 118 return Color.black;
 119 }else if(direction == PheromoneParticle.AWAY_FROM_NEST) {
 120 return Color.blue;
 121 }else{
 122 return Color.green;
 123 }
 124 }
 125
 126 public double getStrength() {
 127 return particles.size();
 128 }
 129
 130 public void setStrength(int strength) {
 131 if(strength > 10) strength = 10;
 132 this.strength = strength;
 133 }
 134
 135 public void start() {
 136 go = true;
 137 if(move == null) {
 138 move = new Thread(this);
 139 move.setDaemon(true);
 140 move.start();
 141 }
 142
 143 }
 144
 145 public void stop() {
 146 go = false;
 147 strength = 0;
 148 }
 149
 150 public int getDirection() {
 151 if(particles.size() == 0) return -1;
 152

99

 153 int toward_nest = 0;
 154 int away_from_nest = 0;
 155
 156 for(PheromoneParticle p : particles) {
 157 if(p.getDirection() == PheromoneParticle.AWAY_FROM_NEST)
 158 away_from_nest++;
 159 else if(p.getDirection() == PheromoneParticle.TOWARD_NEST)
 160 toward_nest++;
 161 }
 162
 163 return toward_nest > away_from_nest ? PheromoneParticle.TOWARD_NEST :
PheromoneParticle.AWAY_FROM_NEST;
 164 }
 165
 166 public boolean laidBy(Ant ant) {
 167 for(PheromoneParticle p : particles) {
 168 if(p.getAnt().equals(ant)) return true;
 169 }
 170
 171 return false;
 172 }
 173
 174 public int getDirection(Ant ant) {
 175 if(particles.size() == 0) return -1;
 176
 177 int toward_nest = 0;
 178 int away_from_nest = 0;
 179
 180 for(int i = particles.size(); i >= 0; i--) {
 181 PheromoneParticle p = particles.elementAt(i);
 182 if(!p.getAnt().equals(ant)) continue;
 183
 184 if(p.getDirection() == PheromoneParticle.AWAY_FROM_NEST)
 185 away_from_nest++;
 186 else if(p.getDirection() == PheromoneParticle.TOWARD_NEST)
 187 toward_nest++;
 188 }
 189
 190 return toward_nest > away_from_nest ? PheromoneParticle.TOWARD_NEST :
PheromoneParticle.AWAY_FROM_NEST;
 191 }
 192
 193 public void setDirection(int direction) {
 194
 195 this.direction = direction;
 196 }
 197
 198 public String toString() {
 199 int toward_nest = 0;
 200 int away_from_nest = 0;
 201
 202 for(PheromoneParticle p : particles) {
 203 if(p.getDirection() == PheromoneParticle.AWAY_FROM_NEST)
 204 away_from_nest++;
 205 else if(p.getDirection() == PheromoneParticle.TOWARD_NEST)
 206 toward_nest++;
 207 }
 208 return "T: " + toward_nest + ", A: " + away_from_nest + ", direction: " +
getDirection();
 209 }
 210}
 211

100

PheromonesParticle.java

 1/*
 2 * PheromoneParticle.java
 3 *
 4 * Created on 16 February 2007, 02:51
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class PheromoneParticle {
 17
 18 private Ant ant = null;
 19 private int direction = AWAY_FROM_NEST;
 20
 21 public static final int TOWARD_NEST = 1;
 22 public static final int AWAY_FROM_NEST = 2;
 23
 24 /** Creates a new instance of PheromoneParticle */
 25 public PheromoneParticle(Ant ant, int direction) {
 26 this.setAnt(ant);
 27 this.setDirection(direction);
 28 }
 29
 30 public Ant getAnt() {
 31 return ant;
 32 }
 33
 34 public void setAnt(Ant ant) {
 35 this.ant = ant;
 36 }
 37
 38 public int getDirection() {
 39 return direction;
 40 }
 41
 42 public void setDirection(int direction) {
 43 this.direction = direction;
 44 }
 45
 46}
 47

101

AntEvent.java

 1/*
 2 * AntEvent.java
 3 *
 4 * Created on 28 November 2006, 13:39
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12import java.util.EventObject;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public class AntEvent extends EventObject {
 19
 20 /** Creates a new instance of AntEvent */
 21 public AntEvent(Object source) {
 22 super(source);
 23 }
 24
 25}
 26

AliveAntEvent.java

 1/*
 2 * AliveAntEvent.java
 3 *
 4 * Created on 28 November 2006, 14:19
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class AliveAntEvent extends AntEvent {
 17 public AliveAntEvent(Object source) { super(source); }
 18}
 19

AntListener.java

 1/*
 2 * AntListener.java
 3 *
 4 * Created on 28 November 2006, 13:38
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12import java.util.EventListener;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public interface AntListener extends EventListener {
 19 public void antEventHandler(AntEvent e);
 20}

102

EnterNestAntEvent.java

 1/*
 2 * EnterNestAntEvent.java
 3 *
 4 * Created on 28 November 2006, 14:40
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class EnterNestAntEvent extends AntEvent {
 17 public EnterNestAntEvent(Object source) { super(source); }
 18}

ExitNestAntEvent.java

 1/*
 2 * ExitNestAntEvent.java
 3 *
 4 * Created on 28 November 2006, 14:40
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class ExitNestAntEvent extends AntEvent {
 17 public ExitNestAntEvent(Object source) { super(source); }
 18}

FoodUpdateEvent.java

 1/*
 2 * FoodUpdateEvent.java
 3 *
 4 * Created on 29 November 2006, 14:50
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class FoodUpdateEvent extends AntEvent {
 17 public FoodUpdateEvent(Object source) { super(source); }
 18}

NewAntEvent.java

 1/*
 2 * NewAntEvent.java
 3 *
 4 * Created on 28 November 2006, 14:11
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class NewAntEvent extends AntEvent {
 17 public NewAntEvent(Object source) { super(source); }
 18}

103

PickedUpFoodEvent.java

 1/*
 2 * PickedUpFoodAntEvent.java
 3 *
 4 * Created on 28 November 2006, 14:45
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package ants.event;
 11
 12/**
 13 *
 14 * @author James Hamilton
 15 */
 16public class PickedUpFoodAntEvent extends AntEvent {
 17 public PickedUpFoodAntEvent(Object source) { super(source); }
 18}

104

AntControl.java

Note: this class contains code generated by Netbeans for the GUI in between user code (line 142-327,
lines 405-426 are fields created by Netbeans).
 1/*
 2 * AntControl.java
 3 *
 4 * Created on 28 November 2006, 00:49
 5 */
 6
 7package ants.control;
 8
 9import ants.Ant;
 10import ants.Grid;
 11import ants.event.AntEvent;
 12import ants.event.AntListener;
 13import ants.event.EnterNestAntEvent;
 14import ants.event.ExitNestAntEvent;
 15import ants.event.FoodUpdateEvent;
 16import ants.event.NewAntEvent;
 17import ants.event.PickedUpFoodAntEvent;
 18import java.awt.event.ActionEvent;
 19import java.awt.event.ActionListener;
 20import javax.swing.DefaultListModel;
 21
 22/**
 23 *
 24 * @author James Hamilton
 25 */
 26public class AntControl extends javax.swing.JFrame implements AntListener, Runnable {
 27
 28 private static AntControl singleton = null;
 29
 30 private int totalAnts = 0;
 31 private int antsInNest = 0;
 32 private int antsRoaming = 0;
 33 private int antsCarryingFood = 0;
 34
 35 private int totalFood = 0;
 36 private int collectedFood = 0;
 37 private int remainingFood = 0;
 38
 39 private long startTime = System.currentTimeMillis();
 40
 41 private boolean running = true;
 42
 43 private Thread move;
 44 private DefaultListModel myAnts = new DefaultListModel();
 45 /** Creates new form AntControl */
 46 public AntControl() {
 47 initComponents();
 48
 49 this.setLocation(500, 0);
 50
 51 btnPause.addActionListener(new ActionListener() {
 52 public void actionPerformed(ActionEvent e) {
 53 for(Ant a : Grid.getInstance().getNest().getAnts()) {
 54 a.pause();
 55 }
 56 }
 57 });
 58
 59 move = new Thread(this);
 60 move.setDaemon(true);
 61 move.start();
 62
 63
 64 }
 65
 66 public void antEventHandler(AntEvent event) {
 67 if(event instanceof NewAntEvent) {
 68 totalAnts++;
 69 antsInNest++;
 70 Ant a = (Ant)event.getSource();
 71 myAnts.addElement(a);

105

 72 lstAnts.setModel(myAnts);
 73
 74 }else if(event instanceof ExitNestAntEvent) {
 75 antsRoaming++;
 76 antsInNest--;
 77 }else if(event instanceof EnterNestAntEvent) {
 78 antsCarryingFood--;
 79 antsInNest++;
 80 collectedFood++;
 81 remainingFood =
Grid.getInstance().getGridSquares().getFoodGridSquares().size();//totalFood - collectedFood;
 82 }else if(event instanceof PickedUpFoodAntEvent) {
 83 antsCarryingFood++;
 84 antsRoaming--;
 85 }else if(event instanceof FoodUpdateEvent) {
 86 totalFood = Grid.getInstance().getGridSquares().getFoodGridSquares().size();
 87 remainingFood = totalFood;
 88 }
 89
 90 txtNumberOfAnts.setText(Integer.toString(getTotalAnts()));
 91 txtNumberOfAntsInNest.setText(Integer.toString(getAntsInNest()));
 92 txtNumberOfAntsCarryingFood.setText(Integer.toString(getAntsCarryingFood()));
 93 txtNumberOfAntsRoaming.setText(Integer.toString(getAntsRoaming()));
 94
 95 txtTotalFood.setText(Integer.toString(getTotalFood()));
 96 txtCollectedFood.setText(Integer.toString(getCollectedFood()));
 97 txtRemainingFood.setText(Integer.toString(getRemainingFood()));
 98 if(remainingFood == 0) running = false;
 99 else running = true;
 100 }
 101
 102 public void run() {
 103 while(running) {
 104 long currentTime = (System.currentTimeMillis() - startTime);
 105
 106 txtTime.setText(millisecondsToString(currentTime));
 107
 108 try {
 109
 110 move.sleep(1000);
 111 }catch (InterruptedException e) {
 112
 113 }
 114 }
 115 }
 116
 117 public static String millisecondsToString(long time) {
 118 //http://www.uk-dave.com/bytes/java/long2time.php
 119 int milliseconds = (int)(time % 1000);
 120 int seconds = (int)((time/1000) % 60);
 121 int minutes = (int)((time/60000) % 60);
 122 int hours = (int)((time/3600000) % 24);
 123 String millisecondsStr = (milliseconds<10 ? "00" : (milliseconds<100 ? "0" :
""))+milliseconds;
 124 String secondsStr = (seconds<10 ? "0" : "")+seconds;
 125 String minutesStr = (minutes<10 ? "0" : "")+minutes;
 126 String hoursStr = (hours<10 ? "0" : "")+hours;
 127 return new String(hoursStr+":"+minutesStr+":"+secondsStr);//+"."+millisecondsStr);
 128 }
 129
 130 public static AntControl getInstance() {
 131 if(getSingleton() == null)
 132 setSingleton(new AntControl());
 133 return getSingleton();
 134 }
 135
 136 /** This method is called from within the constructor to
 137 * initialize the form.
 138 * WARNING: Do NOT modify this code. The content of this method is
 139 * always regenerated by the Form Editor.
 140 */
 141 // <editor-fold defaultstate="collapsed" desc=" Generated Code ">//GEN-BEGIN:initComponents
 142 private void initComponents() {

CODE GENERATED BY NETBEANS FOR THE GUI HERE
 327 }// </editor-fold>//GEN-END:initComponents
 328
 329 /**

106

http://www.uk-dave.com/bytes/java/long2time.php

 330 * @param args the command line arguments
 331 */
 332 public static void main(String...args) {
 333 java.awt.EventQueue.invokeLater(new Runnable() {
 334 public void run() {
 335 new AntControl().setVisible(true);
 336 }
 337 });
 338 }
 339
 340 public static AntControl getSingleton() {
 341 return singleton;
 342 }
 343
 344 public static void setSingleton(AntControl aSingleton) {
 345 singleton = aSingleton;
 346 }
 347
 348 public int getTotalAnts() {
 349 return totalAnts;
 350 }
 351
 352 public void setTotalAnts(int totalAnts) {
 353 this.totalAnts = totalAnts;
 354 }
 355
 356 public int getAntsInNest() {
 357 return antsInNest;
 358 }
 359
 360 public void setAntsInNest(int antsInNest) {
 361 this.antsInNest = antsInNest;
 362 }
 363
 364 public int getAntsRoaming() {
 365 return antsRoaming;
 366 }
 367
 368 public void setAntsRoaming(int antsRoaming) {
 369 this.antsRoaming = antsRoaming;
 370 }
 371
 372 public int getAntsCarryingFood() {
 373 return antsCarryingFood;
 374 }
 375
 376 public void setAntsCarryingFood(int antsCarryingFood) {
 377 this.antsCarryingFood = antsCarryingFood;
 378 }
 379
 380 public int getTotalFood() {
 381 return totalFood;
 382 }
 383
 384 public void setTotalFood(int totalFood) {
 385 this.totalFood = totalFood;
 386 }
 387
 388 public int getCollectedFood() {
 389 return collectedFood;
 390 }
 391
 392 public void setCollectedFood(int collectedFood) {
 393 this.collectedFood = collectedFood;
 394 }
 395
 396 public int getRemainingFood() {
 397 return remainingFood;
 398 }
 399
 400 public void setRemainingFood(int remainingFood) {
 401 this.remainingFood = remainingFood;
 402 }
 403
 404 // Variables declaration - do not modify//GEN-BEGIN:variables
 405 private javax.swing.JButton btnPause;
 406 private javax.swing.JLabel jLabel1;

107

 407 private javax.swing.JLabel jLabel10;
 408 private javax.swing.JLabel jLabel11;
 409 private javax.swing.JLabel jLabel2;
 410 private javax.swing.JLabel jLabel3;
 411 private javax.swing.JLabel jLabel4;
 412 private javax.swing.JLabel jLabel5;
 413 private javax.swing.JLabel jLabel6;
 414 private javax.swing.JLabel jLabel7;
 415 private javax.swing.JLabel jLabel8;
 416 private javax.swing.JLabel jLabel9;
 417 private javax.swing.JScrollPane jScrollPane1;
 418 private javax.swing.JList lstAnts;
 419 private javax.swing.JTextField txtCollectedFood;
 420 private javax.swing.JTextField txtNumberOfAnts;
 421 private javax.swing.JTextField txtNumberOfAntsCarryingFood;
 422 private javax.swing.JTextField txtNumberOfAntsInNest;
 423 private javax.swing.JTextField txtNumberOfAntsRoaming;
 424 private javax.swing.JTextField txtRemainingFood;
 425 private javax.swing.JTextField txtTime;
 426 private javax.swing.JTextField txtTotalFood;
 427 // End of variables declaration//GEN-END:variables
 428
 429}
 430

108

Ant Graph World

GraphJFrame.java
 1/*
 2 * GraphJFrame.java
 3 *
 4 * Created on 04 March 200dff7, 13:30
 5 * version 4
 6 * A JFrame for a GraphCanvas
 7 */
 8
 9package antgraph.gui;
 10
 11import antgraph.Edge;
 12import antgraph.Graph;
 13import antgraph.Nest;
 14import antgraph.NoSuchNodeException;
 15import antgraph.Node;
 16import java.awt.event.KeyAdapter;
 17import java.awt.event.KeyEvent;
 18import java.awt.image.BufferedImage;
 19import java.awt.print.PrinterJob;
 20import java.io.File;
 21
 22import java.util.ArrayList;
 23import java.util.HashMap;
 24import java.util.List;
 25import java.util.Map;
 26import java.util.PriorityQueue;
 27import java.util.Queue;
 28import javax.imageio.ImageIO;
 29import javax.swing.JFrame;
 30
 31/**
 32 *
 33 * @author James
 34 */
 35public class GraphJFrame extends JFrame {
 36
 37
 38 private static GraphCanvas m;// = new GraphCanvas();
 39
 40 public static final int FOOD = 10;
 41 public static final int ANTS = 4;
 42
 43 /** Creates a new instance of GraphJFrame */
 44 public GraphJFrame() {
 45 super("Ant Graph World");
 46 Graph graph = getTestGraph();//new Graph();
 47
 48 m = new GraphCanvas(graph);
 49 // m.setGraph(graph);//.load(STANDARD_FILE)f
 50
 51
 52 setSize((int)m.getSize().getWidth() + 13, (int)m.getSize().getHeight() + 35);
 53 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 54 setResizable(false);
 55 setVisible(true);
 56 add(m);
 57
 58 m.addKeyListener(new KeyAdapter() {
 59 public void keyPressed(KeyEvent e) {
 60 if(e.getKeyChar() == 'p') {
 61 printGraphCanvas(m);
 62 }else if(e.getKeyChar() == 'w') {
 63 for(Edge edge : m.getGraph().getEdges()) {
 64 edge.toggleWeights();
 65 }
 66 }else if(e.getKeyChar() == 'h') {
 67 try {
 68 m.getGraph().highlightShortest(m.getGraph().getNestNode(), "l");
 69 }catch (NoSuchNodeException ex) {
 70
 71 }

109

 72 }else if(e.getKeyChar() == 's') {
 73 // m.getGraph().getNest().start();
 74 }else if(e.getKeyChar() == 'r') {
 75 m.setGraph(getTestGraph());
 76 }else if(e.getKeyChar() == 'n') {
 77 try {
 78 ImageIO.write(m.getBi(), "png", new
File("t_"+m.getGraph().getC()+".png"));
 79 }catch(Exception ex) {
 80 ex.printStackTrace();
 81 }
 82 m.getGraph().step();
 83 }
 84
 85 }
 86 });
 87 m.setFocusable(true);
 88
 89
 90
 91 initialise();
 92 }
 93
 94 private void initialise() {
 95
 96 m.getGraph().getNest().addAnts(ANTS);
 97 // pfs(graph, graph.getNodes().get(0), graph.getNodes().get(graph.getNodes().size() -
1));
 98
 99 }
 100
 101 public void printGraphCanvas(GraphCanvas gc) {
 102 PrinterJob printJob = PrinterJob.getPrinterJob ();
 103
 104 printJob.setPrintable(gc);
 105
 106 if (printJob.printDialog()) {
 107 try {
 108 printJob.print();
 109 } catch (Exception PrintException) {
 110 PrintException.printStackTrace();
 111 }
 112 }
 113
 114 }
 115
 116 public static Graph getTestGraph() {
 117
 118 Graph graph = new Graph();
 119
 120 Node a = new Node("a");
 121 a.setLocation(81, 130);
 122 Node b = new Node("b");
 123 b.setLocation(90, 225);
 124 Nest c = new Nest("N");
 125
 126 c.setLocation(165, 188);
 127 Node d = new Node("d");
 128 d.setLocation(231, 126);
 129 Node e = new Node("e");
 130 e.setLocation(357, 156);
 131 Node f = new Node("f");
 132 f.setLocation(289, 233);
 133 Node g = new Node("g");
 134 g.setLocation(401, 207);
 135 Node h = new Node("h");
 136 h.setLocation(215, 269);
 137 Node i = new Node("i");
 138 i.setLocation(320, 349);
 139 Node j = new Node("j");
 140 j.setLocation(381, 297);
 141 Node k = new Node("k");
 142 k.setLocation(219, 378);
 143 Node l = new Node("l");
 144 l.setLocation(103, 347);
 145
 146 graph.setCurrentChar('l');

110

 147
 148 graph.addNode(a);
 149 graph.addNode(b);
 150 graph.addNode(c);
 151 graph.addNode(d);
 152 graph.addNode(e);
 153 graph.addNode(f);
 154 graph.addNode(g);
 155 graph.addNode(h);
 156 graph.addNode(i);
 157 graph.addNode(j);
 158 graph.addNode(k);
 159 graph.addNode(l);
 160
 161
 162 l.addFood(FOOD);
 163
 164 try {
 165 graph.addEdge(a, c);
 166 graph.addEdge(b, c);
 167 graph.addEdge(c, d);
 168 graph.addEdge(c, h);
 169 graph.addEdge(d, e);
 170 graph.addEdge(d, f);
 171 graph.addEdge(f, g);
 172 graph.addEdge(f, j);
 173 graph.addEdge(g, j);
 174 graph.addEdge(j, i);
 175 graph.addEdge(i, k);
 176 graph.addEdge(h, k);
 177 graph.addEdge(l, k);
 178 }catch (NoSuchNodeException ex) {
 179 System.out.println(ex);
 180 }
 181
 182 return graph;
 183 }
 184
 185 public static Graph getGraph() {
 186 return m.getGraph();
 187 }
 188
 189 public static void main(String[] args) {
 190 java.awt.EventQueue.invokeLater(new Runnable() {
 191 public void run() {
 192 new GraphJFrame();
 193 }
 194 });
 195
 196
 197
 198 }
 199
 200}
 201

111

 1/*
 2 * GraphCanvas.java
 3 *
 4 * Created on 04 March 2007, 13:21
 5 *
 6 * the graph is drawn on this canvas. also listens for mouse events. the canvas is printable
 7 */
 8
 9package antgraph.gui;
 10
 11import antgraph.Ant;
 12import antgraph.Edge;
 13import antgraph.Graph;
 14import antgraph.GraphComponent;
 15import antgraph.NoSuchNodeException;
 16import antgraph.Node;
 17import java.awt.Canvas;
 18import java.awt.Color;
 19import java.awt.Graphics;
 20import java.awt.Graphics2D;
 21import java.awt.RenderingHints;
 22import java.awt.event.MouseAdapter;
 23import java.awt.event.MouseEvent;
 24import java.awt.event.MouseMotionAdapter;
 25import java.awt.image.BufferedImage;
 26import java.awt.print.PageFormat;
 27import java.awt.print.Printable;
 28import java.awt.print.PrinterException;
 29import java.util.ArrayList;
 30import java.util.Collections;
 31import java.util.List;
 32
 33/**
 34 *
 35 * @author James
 36 */
 37public class GraphCanvas extends Canvas implements Runnable, Printable {
 38
 39 private BufferedImage bi;
 40 private Graphics big;
 41 private Thread animate;
 42
 43 public static final int WIDTH = 500, HEIGHT = 500;
 44 private Graph graph;
 45 private Node selectedNode = null;
 46 private Edge selectedEdge = null;
 47
 48 private List<GraphComponent> selectedComponents = new ArrayList<GraphComponent>();
 49 private int c = 0;
 50 private boolean dragging = false;
 51
 52 public GraphCanvas(Graph g) {
 53 setSize(WIDTH, HEIGHT);
 54 this.graph = g;
 55
 56 //mouse listener
 57
 58 this.addMouseListener(new MouseAdapter() {
 59 public void mousePressed(MouseEvent e) {
 60
 61 if(e.getButton() == e.BUTTON1) {
 62 if(containsNode(e.getX(), e.getY())) {
 63 if(nodeSelected()) {
 64 Node a = getSelectedNode();
 65 Node b = nodeAt(e.getX(), e.getY());
 66
 67 try {
 68 graph.addEdge(a, b);
 69 deselectAll();
 70 }catch (NoSuchNodeException ex) {
 71 System.out.println(ex); //shouldn't happen
 72 }
 73 }else{
 74 deselectAll();
 75
 76 setSelected(nodeAt(e.getX(), e.getY()));
 77

112

 78 List<Edge> edges =
GraphJFrame.getGraph().getEdges(getSelectedNode());
 79
 80 Collections.sort(edges);
 81 System.out.println(edges);
 82 }
 83 }else if(containsEdge(e.getX(), e.getY())) {
 84
 85 deselectAll();
 86
 87 setSelected(edgeAt(e.getX(), e.getY()));
 88 }else{
 89
 90 if(nodeSelected()) {
 91
 92 graph.addNode(e.getX(), e.getY());
 93 System.out.println(nodeAt(e.getX(), e.getY()));
 94 try {
 95 graph.addEdge(getSelectedNode(), nodeAt(e.getX(), e.getY()));
 96 }catch (NoSuchNodeException ex) {
 97 System.out.println(ex); //shouldn't happen
 98 }
 99
 100 deselectAll();
 101 }else{
 102
 103 graph.addNode(e.getX(), e.getY());
 104 }
 105 }
 106 }else if(e.getButton() == e.BUTTON3) {
 107 if(containsNode(e.getX(), e.getY())) {
 108 deselectAll();
 109
 110 graph.removeNode(nodeAt(e.getX(), e.getY()));
 111 }else if(containsEdge(e.getX(), e.getY())) {
 112 deselectAll();
 113
 114 graph.removeEdge(edgeAt(e.getX(), e.getY()));
 115 }else{
 116
 117
 118 //graph.highlight(graph.getNodes());
 119 }
 120 }
 121
 122
 123 }
 124
 125
 126 public void mouseReleased(MouseEvent e) {
 127 if(dragging) {
 128 deselectAll();
 129 dragging = false;
 130 }
 131 }
 132
 133 });
 134
 135
 136 addMouseMotionListener(new MouseMotionAdapter() {
 137 public void mouseDragged(MouseEvent e) {
 138
 139 if(componentSelected()) {
 140 dragging = true;
 141 if(nodeSelected()) {
 142
 143 getSelectedNode().setLocation(e.getX(), e.getY());
 144
 145 }
 146 }
 147 }
 148
 149 public void mouseMoved(MouseEvent e) {
 150 dehighlight();
 151
 152 GraphComponent gc =componentAt(e.getX(), e.getY());
 153 if(!dragging && gc != null && !gc.isSelected())

113

getGraph().highlight(gc);//gc.highlight(true);
 154
 155
 156 }
 157 });
 158
 159 //buffered image for double buffering
 160 bi = new BufferedImage(getWidth(),getHeight(),BufferedImage.TYPE_INT_RGB);
 161 big = getBi().createGraphics();
 162 animate = null;
 163 animate = new Thread(this);
 164 animate.start();
 165 }
 166
 167 public Graph getGraph() {
 168 return graph;
 169 }
 170
 171 public void setGraph(Graph graph) {
 172
 173 if(this.graph != null) {
 174 if(this.graph.getNest() != null) {
 175 for(Ant ant : this.graph.getNest().getAnts()) {
 176
 177 ant.stop();
 178 }
 179 for(Edge e : this.graph.getEdges()) {
 180 e.getPheromone().stop();
 181 }
 182
 183 }
 184 }
 185 this.graph = graph;
 186 }
 187
 188 public void update(Graphics g) {
 189 clear();
 190 big.setColor(Color.BLACK);
 191 if(graph.getNodes().size() > 0) {
 192
 193 if(graph.getEdges().size() > 0) {
 194
 195 for(Edge e : graph.getEdges()) {
 196
 197 e.draw(big);
 198
 199 }
 200 }
 201
 202 for(Node n : graph.getNodes()) {
 203 n.draw(big);
 204 }
 205
 206 if(graph.getNest().countFood() == GraphJFrame.FOOD) {
 207
 208 }
 209
 210 }
 211 g.drawImage(getBi(), 0, 0, this);
 212 }
 213
 214 public void paint(Graphics g) {
 215 update(g);
 216 }
 217
 218
 219 public void clear() {
 220 big.setColor(Color.WHITE);
 221 big.fillRect(0,0,getWidth(),getHeight());
 222 }
 223
 224 public void dehighlight() {
 225 for(GraphComponent gc : getGraph().getComponents())
 226 gc.highlight(false);
 227 }
 228
 229 public void addSelected(GraphComponent gc) {

114

 230 selectedComponents.add(gc);
 231 gc.setSelected(true);
 232 }
 233
 234 public void setSelected(GraphComponent gc) {
 235 deselectAll();
 236 addSelected(gc);
 237 }
 238
 239 public boolean componentsSelected() {
 240 return selectedComponents.size() > 0;
 241 }
 242
 243 public boolean componentSelected() {
 244 return selectedComponents.size() == 1;
 245 }
 246
 247 public int countSelectedComponents() {
 248 return selectedComponents.size();
 249 }
 250
 251 public List<GraphComponent> getSelectedComponents() {
 252 return selectedComponents;
 253 }
 254
 255 public GraphComponent getSelectedComponent() {
 256 return componentsSelected() ? selectedComponents.get(0) : null;
 257 }
 258
 259 public void deselectComponent(GraphComponent gc) {
 260 selectedComponents.remove(gc);
 261 gc.setSelected(false);
 262 }
 263
 264 public void run() {
 265 //canvas is redrawn every 200 milliseconds.
 266 while(animate!=null) {
 267
 268 try {
 269 animate.sleep(200);
 270
 271 repaint();
 272 }catch (Exception e) {
 273 System.out.println(e);
 274 }
 275
 276 }
 277 big.dispose();
 278 }
 279
 280 public boolean containsNode(int x, int y) {
 281 for(Node n : graph.getNodes())
 282 if(n.contains(x, y))
 283 return true;
 284 return false;
 285 }
 286
 287 public Node nodeAt(int x, int y) {
 288 for(Node n : graph.getNodes())
 289 if(n.contains(x, y))
 290 return n;
 291 return null;
 292 }
 293
 294 public boolean containsEdge(int x, int y) {
 295 for(Edge e : graph.getEdges())
 296 if(e.contains(x, y))
 297 return true;
 298 return false;
 299 }
 300
 301 public Edge edgeAt(int x, int y) {
 302 for(Edge e : graph.getEdges())
 303 if(e.contains(x, y))
 304 return e;
 305 return null;
 306 }

115

 307
 308 public GraphComponent componentAt(int x, int y) {
 309 for(GraphComponent gc : getGraph().getComponents())
 310 if(gc.contains(x, y))
 311 return gc;
 312 return null;
 313 }
 314
 315 public void setSelectedNode(Node n) {
 316
 317 setSelected(n);
 318 n.setSelected(true);
 319
 320 }
 321
 322 public Node getSelectedNode() {
 323 return nodeSelected() ? (Node)getSelectedComponent() : null;
 324 }
 325
 326
 327 public boolean nodeSelected() {
 328 return getSelectedComponent() != null ? getSelectedComponent() instanceof Node : false;
 329 }
 330
 331 public void setSelectedEdge(Edge e) {
 332 setSelected(e);
 333 e.setSelected(true);
 334
 335 }
 336 public Edge getSelectedEdge() {
 337 return edgeSelected() ? (Edge)getSelectedComponent() : null;
 338 }
 339
 340 public void deselectAll() {
 341 for(GraphComponent gc : getSelectedComponents())
 342 gc.setSelected(false);
 343 getSelectedComponents().clear();
 344 }
 345
 346 public boolean edgeSelected() {
 347 return getSelectedComponent() != null ? getSelectedComponent() instanceof Edge : false;
 348 }
 349
 350
 351 public int print(Graphics graphics, PageFormat pageFormat, int pageIndex) throws
PrinterException {
 352 /* printing */
 353 if (pageIndex == 0) {
 354 Graphics2D g2d = (Graphics2D) graphics;
 355
 356 g2d.setRenderingHint
 357 (RenderingHints.KEY_ANTIALIASING,
 358 RenderingHints.VALUE_ANTIALIAS_ON);
 359
 360 g2d.translate(pageFormat.getImageableX(), pageFormat.getImageableY());
 361 paint(graphics);
 362
 363 int x = (int)pageFormat.getImageableX();
 364 int y = (int)pageFormat.getHeight() / 2;
 365 int h = (int)g2d.getFontMetrics().getHeight();
 366
 367 g2d.drawString("Adjacency List", x, y);
 368 y += h + 3;
 369 g2d.drawString("----------------------", x, y);
 370 y += h + 3;
 371 for(Node n : getGraph().getNodes()) {
 372
 373 g2d.drawString(n + ": " + getGraph().getAdjacencyList(n), x, y);
 374
 375 y += h + 3;
 376
 377 }
 378
 379
 380 return PAGE_EXISTS;
 381 }else{
 382 return NO_SUCH_PAGE;

116

 383 }
 384 }
 385
 386 public BufferedImage getBi() {
 387 return bi;
 388 }
 389}
 390

117

 1/*
 2 * GraphComponent.java
 3 *
 4 * Created on 07 March 2007, 00:20
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import java.awt.Color;
 13import java.awt.Graphics;
 14import java.awt.Graphics2D;
 15import java.awt.Polygon;
 16import java.awt.RenderingHints;
 17
 18/**
 19 *
 20 * @author James
 21 */
 22public abstract class GraphComponent extends Polygon {
 23
 24 public static final Color NORMAL = Color.BLACK;
 25 public static final Color SELECTED = Color.GREEN;
 26
 27 private Color color = NORMAL;
 28
 29 private boolean selected = false;
 30 private boolean highlighted = false;
 31
 32 /** Creates a new instance of GraphComponent */
 33 public GraphComponent() {
 34
 35 }
 36
 37 public boolean isSelected() {
 38 return selected;
 39 }
 40
 41 public void setSelected(boolean selected) {
 42 this.selected = selected;
 43 color = selected ? SELECTED : NORMAL;
 44 }
 45
 46 public void draw(Graphics g) {
 47 update();
 48 Graphics2D g2d = (Graphics2D)g;
 49 g2d.setRenderingHint
 50 (RenderingHints.KEY_ANTIALIASING,
 51 RenderingHints.VALUE_ANTIALIAS_ON);
 52
 53 Color old = g2d.getColor();
 54
 55 g2d.setColor(getColor());
 56
 57 g2d.fill(this);
 58
 59 g2d.setColor(old);
 60 }
 61
 62 public void highlight(boolean value) {
 63 highlighted = value;
 64 }
 65
 66 public boolean isHighlighted() {
 67 return highlighted;
 68 }
 69
 70 public Color getColor() {
 71 if(!isSelected() && isHighlighted())
 72 return Color.BLUE;
 73 else
 74 return color;
 75 }
 76
 77 public abstract void update();

118

 78
 79}
 80

119

 1/*
 2 * Ant.java
 3 *
 4 * Created on 04 March 2007, 01:34
 5
 6 * Represents a single ant
 7 *
 8 * TODO: improve move algorithm.
 9 * remove need for previousNode (i.e. ant memory) - use pheromone clues instead.
 10 */
 11
 12package antgraph;
 13
 14import antgraph.Pheromone.Direction;
 15import antgraph.gui.GraphJFrame;
 16import java.awt.event.KeyEvent;
 17import java.awt.event.KeyListener;
 18import java.awt.event.MouseEvent;
 19import java.awt.event.MouseListener;
 20import java.util.ArrayList;
 21import java.util.Collections;
 22import java.util.List;
 23
 24/**
 25 *
 26 * @author James
 27 */
 28public class Ant implements Runnable {
 29
 30 private Food food = null;
 31 private Thread move;
 32 private Node node = null;
 33 private Node previousNode = null;
 34
 35 private char name;
 36
 37 private static int sleepRate = 10;
 38 private static char nextchar = 'a';
 39
 40 private boolean justPickedUpFood = false;
 41
 42
 43 /**
 44 * Creates a new instance of Ant, sets is current node to Node and names it
 45 * @param node The starting node for the ant
 46 */
 47 public Ant(Node node) {
 48 this.node = node;
 49 name = nextchar;
 50 nextchar++;
 51 }
 52
 53 /**
 54 *
 55 * @return true if the ant is carrying food
 56 */
 57 public boolean carryingFood() {
 58 return food != null;
 59 }
 60
 61 /**
 62 *
 63 * @return food that the ant is carrying or null
 64 */
 65 public Food getFood() {
 66 return food;
 67 }
 68
 69 /**
 70 *
 71 * @param food lets the ant pick up food
 72 */
 73 public void setFood(Food food) {
 74 this.food = food;
 75 }
 76
 77 /**

120

 78 * moves the ant one step
 79 */
 80 public void move() {
 81 if(GraphJFrame.getGraph().getNest().countFood() >= GraphJFrame.FOOD) stop();
 82
 83 //move!
 84
 85 Node next = null;
 86 Edge chosen = null;
 87
 88 List<Edge> edges = GraphJFrame.getGraph().getEdges(getNode());
 89
 90 if(!justPickedUpFood && getNode().countFood() == 0 && edges.size() > 1)
edges.remove(GraphJFrame.getGraph().getEdge(getNode(), getPreviousNode()));
 91
 92 int pStrengthA = countPheromoneStrength(edges, Direction.AWAY_FROM_NEST);
 93 int pStrengthT = countPheromoneStrength(edges, Direction.TOWARD_NEST);
 94 int pStrength = pStrengthA + pStrengthT;
 95
 96
 97 if(carryingFood()) {
 98 //if the ant is carrying food - it wants to follow the strongest A trail back to the
nest.
 99 if(pStrengthA > 0) {
 100 Collections.sort(edges, Edge.AwayFromNestComparator);
 101
 102 chosen = edges.get(0);
 103 }else if(pStrength == 0) {
 104 chosen = (Edge)getRandomElement(edges);
 105 }else{
 106
 107 Collections.sort(edges, Collections.reverseOrder(Edge.TowardNestComparator));
 108
 109 chosen = edges.get(0);
 110 }
 111
 112 }else{
 113
 114 if(pStrengthT > 0) {
 115 Collections.sort(edges, Edge.TowardNestComparator);
 116
 117 chosen = edges.get(0);
 118 }else if(pStrength == 0) {
 119 chosen = (Edge)getRandomElement(edges);
 120 }else{
 121
 122 Collections.sort(edges, Collections.reverseOrder(Edge.AwayFromNestComparator));
 123
 124 chosen = edges.get(0);
 125
 126 }
 127
 128 }
 129
 130 chosen.getPheromone().increaseStrength(this, carryingFood() ?
Pheromone.Direction.TOWARD_NEST : Pheromone.Direction.AWAY_FROM_NEST);
 131
 132 setNode(chosen.other(getNode()));
 133
 134 if(getNode().containsFood() && !carryingFood() && !getNode().isNest()) {
 135 this.setFood(getNode().removeFood());
 136 justPickedUpFood = true;
 137
 138 }else{
 139 justPickedUpFood = false;
 140 }
 141 }
 142
 143 /**
 144 * should be moved somewhere else?
 145 * @param list the list of edges to count pheromone strength from.
 146 * @param direction the direction of the strength to count
 147 * @return the pheromone strength for the direction from the specified list
 148 */
 149 public static int countPheromoneStrength(List<Edge> list, Direction direction) {
 150 int count = 0;
 151 for(Edge e : list) {

121

 152 count += e.getPheromone().getStrength(direction);
 153 }
 154 return count;
 155 }
 156
 157 /**
 158 * returns a random element from the specified list
 159 * @param l the list to choose from
 160 * @return a random element from the list
 161 */
 162 public static Object getRandomElement(List l) {
 163 return l.size() > 0 ? l.get((int)(Math.random() * l.size())) : null;
 164 }
 165
 166 /**
 167 * moves the ant
 168 */
 169 public void run() {
 170
 171 while(move != null) {
 172 try {
 173 move();
 174
 175 move.sleep(getSleepRate());
 176 }catch (InterruptedException e) {}
 177 }
 178 }
 179
 180 /**
 181 * start the ant moving
 182 */
 183 public void start() {
 184 //Create and start a new Thread.
 185 move = new Thread(this);
 186 move.setDaemon(true);
 187 move.start();
 188 }
 189
 190 /**
 191 * stop the ant moving
 192 */
 193 public void stop() {
 194 move = null;
 195 }
 196
 197 /**
 198 *
 199 * @return the rate at which the thread sleeps
 200 */
 201 public static int getSleepRate() {
 202 return sleepRate;
 203 }
 204
 205 /**
 206 *
 207 * @param aSleepRate the rate at which the thread sleeps
 208 */
 209 public static void setSleepRate(int aSleepRate) {
 210 sleepRate = aSleepRate;
 211 }
 212
 213 /**
 214 *
 215 * @return the ants current node
 216 */
 217 public Node getNode() {
 218 return node;
 219 }
 220
 221 /**
 222 *
 223 * @param node set the ants current node
 224 */
 225 public void setNode(Node node) {
 226
 227 previousNode = this.node;
 228 if(this.node != null) {

122

 229 this.node.removeAnt(this);
 230 }
 231 node.addAnt(this);
 232 this.node = node;
 233 }
 234
 235 public String toString() {
 236 if(carryingFood())
 237 return Character.toString(name).toUpperCase();
 238 else
 239 return Character.toString(name);
 240 }
 241
 242 public Node getPreviousNode() {
 243 return previousNode;
 244 }
 245}
 246

123

 1/*
 2 * Edge.java
 3 *
 4 * Created on 03 March 2007, 19:33
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import antgraph.Pheromone.Direction;
 13import java.awt.Color;
 14import java.awt.Graphics;
 15import java.awt.Graphics2D;
 16import java.awt.RenderingHints;
 17import java.util.Comparator;
 18
 19/**
 20 *
 21 * @author James
 22 */
 23public class Edge extends GraphComponent implements Comparable<Edge> {
 24
 25 private Node a, b;
 26 private Pheromone pheromone = new Pheromone();
 27 public static final int THICKNESS = 7;
 28 private double weight = 0;
 29 private int centerX, centerY;
 30 private boolean showWeights = false;
 31
 32 /** Creates a new instance of Edge */
 33 public Edge(Node a, Node b) {
 34 this.a = a;
 35 this.b = b;
 36 }
 37
 38 public Node a() {
 39 return a;
 40 }
 41
 42 public Node b() {
 43 return b;
 44 }
 45
 46 public boolean from(Node n) {
 47 return n.equals(a);
 48 }
 49
 50 public Node other(Node n) {
 51 return n.equals(a) ? b : a;
 52 }
 53
 54 public int hashCode() {
 55 return a().hashCode() + b().hashCode();
 56 }
 57
 58 public boolean equals(Object o) {
 59 return (o instanceof Edge &&
 60 ((Edge)o).a().equals(a()) &&
 61 ((Edge)o).b().equals(b()));
 62 }
 63
 64 public String toString() {
 65 return a.toString() + " <-> " + b.toString() + ", S: " + this.getPheromone().toString();
 66 }
 67
 68 public Pheromone getPheromone() {
 69 return pheromone;
 70 }
 71
 72 public Pheromone getPheromone(Direction direction) {
 73 return pheromone.getPheromone(direction);
 74 }
 75
 76 public void update() {
 77 this.setLine(a.getCenterX(), a.getCenterY(), b.getCenterX(), b.getCenterY());

124

 78
 79 }
 80
 81 public void setLine(double x1, double y1, double x2, double y2) {
 82 setLine((int)x1, (int)y1, (int)x2, (int)y2);
 83 }
 84
 85 public void setLine(int x1, int y1, int x2, int y2) {
 86 setLine(x1, y1, x2, y2, THICKNESS);
 87 }
 88
 89 public void setLine(int x1, int y1, int x2, int y2, int thickness) {
 90 //http://www.rgagnon.com/javadetails/java-0260.html
 91 // The thick line is in fact a filled polygon
 92
 93 int dX = x2 - x1;
 94 int dY = y2 - y1;
 95 // line length
 96 double lineLength = Math.sqrt(dX * dX + dY * dY);
 97
 98 double scale = (double)(thickness) / (2 * lineLength);
 99
 100 // The x,y increments from an endpoint needed to create a rectangle...
 101 double ddx = -scale * (double)dY;
 102 double ddy = scale * (double)dX;
 103 ddx += (ddx > 0) ? 0.5 : -0.5;
 104 ddy += (ddy > 0) ? 0.5 : -0.5;
 105 int dx = (int)ddx;
 106 int dy = (int)ddy;
 107
 108 // Now we can compute the corner points...
 109
 110 super.reset();
 111 super.addPoint(x1 + dx, y1 + dy);
 112 super.addPoint(x1 - dx, y1 - dy);
 113 super.addPoint(x2 - dx, y2 - dy);
 114 super.addPoint(x2 + dx, y2 + dy);
 115
 116 setWeight(Math.sqrt(Math.pow(x2 - x1, 2) + Math.pow(y2 - y1, 2)));
 117 centerX = (x1 + (int)getWeight() / 2);
 118 centerY = (y1 + (y2 - y1) / 2);
 119 }
 120
 121 public void draw(Graphics g) {
 122 super.draw(g);
 123 if(showWeights()) {
 124 Graphics2D g2d = (Graphics2D)g;
 125 g2d.setRenderingHint
 126 (RenderingHints.KEY_ANTIALIASING,
 127 RenderingHints.VALUE_ANTIALIAS_ON);
 128
 129 Color old = g2d.getColor();
 130
 131 g2d.setColor(Color.BLACK);
 132
 133 g2d.drawString(Integer.toString(getPheromone().getStrength()), (int)getCenterX() -
3, (int)getCenterY() - 10);
 134
 135 g2d.setColor(old);
 136 }
 137 }
 138
 139 public int getCenterX() {
 140 return centerX;
 141 }
 142
 143 public int getCenterY() {
 144 return centerY;
 145 }
 146
 147 public double getWeight() {
 148 return 1.0;//weight;
 149 }
 150
 151 private void setWeight(double weight) {
 152 this.weight = Math.round(weight);
 153 }

125

http://www.rgagnon.com/javadetails/java-0260.html

 154
 155 public int compareTo(Edge otherEdge) {
 156 double thisStrength = this.getPheromone() == null ? -1.00 :
this.getPheromone().getStrength();
 157 double otherStrength = otherEdge.getPheromone() == null ? -1.00 :
otherEdge.getPheromone().getStrength();
 158 return (int) (otherStrength - thisStrength);
 159 }
 160
 161 public static Comparator<Edge> TowardNestComparator = new Comparator<Edge>() {
 162 public int compare(Edge e2, Edge e1) {
 163 // int pheromoneStrength = gs1.getPheromone() != null ?
gs1.getPheromone().getStrength() : 0;
 164 return e1.getPheromone().getStrength(Direction.TOWARD_NEST) -
e2.getPheromone().getStrength(Direction.TOWARD_NEST);
 165 }
 166 };
 167
 168 public static Comparator<Edge> AwayFromNestComparator = new Comparator<Edge>() {
 169 public int compare(Edge e2, Edge e1) {
 170 // int pheromoneStrength = gs1.getPheromone() != null ?
gs1.getPheromone().getStrength() : 0;
 171 return e1.getPheromone().getStrength(Direction.AWAY_FROM_NEST) -
e2.getPheromone().getStrength(Direction.AWAY_FROM_NEST);
 172 }
 173 };
 174
 175 public boolean showWeights() {
 176 return showWeights;
 177 }
 178
 179 public void showWeights(boolean showWeights) {
 180 this.showWeights = showWeights;
 181 }
 182
 183 public void toggleWeights() {
 184 this.showWeights = !this.showWeights;
 185 }
 186}

126

 1/*
 2 * Nets1.java
 3 *
 4 * Created on March 21, 2007, 10:24 PM
 5 *
 6 * To change this tfgemplate, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import antgraph.gui.GraphJFrame;
 13
 14/**
 15 *
 16 * @author james
 17 */
 18public class Nest extends Node {
 19
 20 /** Creates a new instance of Nets1 */
 21 public Nest(String name, int x, int y) {
 22 super(name, x, y);
 23 }
 24
 25 public Nest(String name) {
 26 super(name);
 27 }
 28
 29 public void addAnt() {
 30 Ant ant = new Ant(this);
 31 super.addAnt(ant);
 32 GraphJFrame.getGraph().addAnt(ant);
 33 }
 34
 35 public void addAnts(int n) {
 36 for(int i = 0; i < n; i++)
 37 addAnt();
 38 }
 39
 40 public void addAnt(Ant ant) {
 41 System.out.println("Ant returned to nest");
 42 addFood(ant.getFood());
 43 ant.setFood(null);
 44 super.addAnt(ant);
 45 }
 46}
 47

127

 1/*
 2 * Pheromone.java
 3 *
 4 * Created on 04 March 2007, 02:37
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import antgraph.gui.GraphJFrame;
 13import java.util.List;
 14import java.util.Stack;
 15import java.util.Vector;
 16
 17/**
 18 *
 19 * @author James
 20 */
 21public class Pheromone implements Runnable {
 22
 23 private List<PheromoneParticle> particles = new Vector<PheromoneParticle>();
 24
 25 private int iTowardsNest = 0;
 26 private int iAwayFromNest = 0;
 27
 28 private Thread move;
 29 private int rate = 10;
 30
 31 public static enum Direction { TOWARD_NEST, AWAY_FROM_NEST, NONE; }
 32
 33 /** Creates a new instance of Pheromone */
 34 public Pheromone() {
 35 this(true);
 36 }
 37
 38 public Pheromone(boolean start) {
 39 if(start) {
 40 move = new Thread(this);
 41 move.setDaemon(true);
 42
 43 }
 44 }
 45
 46 public void run() {
 47 while(move != null) {
 48
 49 try {
 50
 51 if(GraphJFrame.getGraph().getNest() != null &&
 52 GraphJFrame.getGraph().getNest().countFood() >= GraphJFrame.FOOD)
stop();
 53 move.sleep(getRate());
 54 decrease();
 55
 56 }catch (InterruptedException e) {
 57 System.out.println(e);
 58 }
 59
 60 }
 61 }
 62
 63 public Direction getDirection(Ant ant) {
 64 for(int i = particles.size() - 1; i >= 0; i++) {
 65 if(particles.get(i).getAnt().equals(ant))
 66 return particles.get(i).getDirection();
 67 }
 68 return Direction.NONE;
 69 }
 70
 71 public void decrease() {
 72
 73 if(particles.size() > 0) {
 74 if(particles.get(0).getDirection() == Direction.TOWARD_NEST) {
 75 iTowardsNest--;
 76 }else if(particles.get(0).getDirection() == Direction.AWAY_FROM_NEST) {

128

 77 iAwayFromNest--;
 78 }
 79
 80 particles.remove(0);
 81
 82 }
 83
 84 }
 85
 86 public void increaseStrength(Ant ant, Direction direction) {
 87 particles.add(new PheromoneParticle(ant, direction));
 88
 89 if(direction == Direction.TOWARD_NEST) {
 90 iTowardsNest++;
 91 }else if(direction == Direction.AWAY_FROM_NEST) {
 92 iAwayFromNest++;
 93 }
 94 }
 95
 96 public synchronized void increaseStrength(PheromoneParticle p) {
 97 this.increaseStrength(p.getAnt(), p.getDirection());
 98 }
 99
 100 public Pheromone getPheromone(Direction direction) {
 101 Pheromone p = new Pheromone(false);
 102 for(PheromoneParticle pp : particles) {
 103 if(pp.getDirection() == direction) p.increaseStrength(pp);
 104 }
 105
 106 return p;
 107 }
 108
 109 public int getStrength() {
 110 return getStrength(Direction.TOWARD_NEST) + getStrength(Direction.AWAY_FROM_NEST);
 111 }
 112
 113
 114 public int getStrength(Direction direction) {
 115 if(direction == direction.TOWARD_NEST) {
 116 return iTowardsNest;
 117 }else if(direction == Direction.AWAY_FROM_NEST) {
 118 return iAwayFromNest;
 119 }
 120 return 0;
 121
 122 }
 123
 124 public void start() {
 125 if(move == null) {
 126 move = new Thread(this);
 127 move.setDaemon(true);
 128 move.start();
 129 }
 130
 131 }
 132
 133 public void stop() {
 134 move = null;
 135 }
 136
 137
 138 public Direction getDirection() {
 139 if(particles.size() == 0) return Direction.NONE;
 140
 141 int toward_nest = getStrength(Direction.TOWARD_NEST);
 142 int away_from_nest = getStrength(Direction.AWAY_FROM_NEST);
 143
 144 return toward_nest > away_from_nest ? Direction.TOWARD_NEST : Direction.AWAY_FROM_NEST;
 145
 146 }
 147
 148 public boolean laidBy(Ant ant) {
 149 for(PheromoneParticle p : particles) {
 150 if(p.getAnt().equals(ant)) return true;
 151 }
 152
 153 return false;

129

 154 }
 155
 156 public String toString() {
 157 StringBuffer sb = new StringBuffer();
 158
 159 sb.append("T: " + getStrength(Direction.TOWARD_NEST));
 160 sb.append(", ");
 161 sb.append("A: " + getStrength(Direction.AWAY_FROM_NEST));
 162 sb.append(", ");
 163 sb.append("A+T: " + getStrength());
 164 sb.append(", D: " + getDirection());
 165 return sb.toString();
 166 }
 167
 168 public int getRate() {
 169 return rate;
 170 }
 171
 172 public void setRate(int rate) {
 173 this.rate = rate;
 174 }
 175}
 176

130

 1/*
 2 * PheromoneParticle.java
 3 *
 4 * Created on 16 February 2007, 02:51
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import antgraph.Pheromone.Direction;
 13
 14/**
 15 *
 16 * @author James Hamilton
 17 */
 18public class PheromoneParticle {
 19
 20 private Ant ant = null;
 21 private Direction direction = Direction.AWAY_FROM_NEST;
 22
 23 /** Creates a new instance of PheromoneParticle */
 24 public PheromoneParticle(Ant ant, Direction direction) {
 25 this.setAnt(ant);
 26 this.setDirection(direction);
 27 }
 28
 29 public Ant getAnt() {
 30 return ant;
 31 }
 32
 33 public void setAnt(Ant ant) {
 34 this.ant = ant;
 35 }
 36
 37 public Direction getDirection() {
 38 return direction;
 39 }
 40
 41 public void setDirection(Direction direction) {
 42 this.direction = direction;
 43 }
 44
 45 public String toString() {
 46 return getDirection() == Direction.AWAY_FROM_NEST ? "A" : "T";
 47 }
 48}
 49

131

 1/*
 2 * Food.java
 3 *
 4 * Created on 04 March 2007, 01:52
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12/**
 13 *
 14 * @author James
 15 */
 16public class Food {
 17
 18 /** Creates a new instance of Food */
 19 public Food() {
 20 }
 21
 22}

132

 1/*
 2 * Node.java
 3 *
 4 * Created on 03 March 2007, 19:33
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12import antgraph.gui.GraphJFrame;
 13import java.awt.Color;
 14import java.awt.Graphics;
 15import java.awt.Graphics2D;
 16import java.awt.RenderingHints;
 17import java.util.ArrayList;
 18import java.util.List;
 19
 20/**
 21 *
 22 * @author James
 23 */
 24public class Node extends GraphComponent {
 25
 26 private String name;
 27 private List<Ant> ants = new ArrayList<Ant>();
 28 private List<Food> food = new ArrayList<Food>();
 29
 30
 31 private int x, y, radius;
 32
 33 public Node(String name) {
 34 radius = 20;
 35
 36 this.setName(name);
 37 }
 38
 39 public Node(String name, int x, int y) {
 40 this(name);
 41 this.x = x;
 42 this.y = y;
 43 update();
 44 }
 45
 46 public Node(Object o, int x, int y) {
 47 this(o.toString(), x, y);
 48 }
 49
 50 public Node(Object o) {
 51 this(o.toString());
 52 }
 53
 54 public void addAnt(Ant ant) {
 55 getAnts().add(ant);
 56 }
 57
 58 public int countAnts() {
 59 return getAnts().size();
 60 }
 61
 62 public void removeAnt(Ant ant) {
 63 if(getAnts().size() > 0) getAnts().remove(ant);
 64 }
 65
 66 public void addFood() {
 67 food.add(new Food());
 68 }
 69
 70 public void addFood(int n) {
 71 for(int i = 0; i < n; i++)
 72 addFood();
 73 }
 74
 75 public void addFood(Food f) {
 76 if(f != null)
 77 food.add(f);

133

 78 }
 79
 80 public Food removeFood() {
 81 Food f = food.get(0);
 82 food.remove(0);
 83 return f;
 84 }
 85
 86 public int countFood() {
 87 return food.size();
 88 }
 89
 90 public Nest getNest() {
 91 if(isNest()) return (Nest)this;
 92 else return null;
 93 }
 94
 95 public boolean isNest() {
 96 return this instanceof Nest;
 97 }
 98
 99 public boolean containsFood() {
 100 return countFood() != 0;
 101 }
 102
 103 public boolean containsAnts() {
 104 return countAnts() != 0;
 105 }
 106
 107 public boolean empty() {
 108 return !(containsFood() && containsAnts());
 109 }
 110
 111 public String toString() {
 112 return getName();
 113 }
 114
 115 public int hashCode() {
 116 return toString().hashCode();
 117 }
 118
 119 public boolean equals(Object o) {
 120 return o instanceof Node &&
 121 ((Node)o).getName().equals(getName());
 122 }
 123
 124 public String getName() {
 125 return name;
 126 }
 127
 128 private void setName(String name) {
 129 this.name = name;
 130 }
 131
 132 public List<Node> getAdjacencyList() {
 133 return GraphJFrame.getGraph().getAdjacencyList(this);
 134 }
 135
 136
 137 public void draw(Graphics g) {
 138 super.draw(g);
 139 Graphics2D g2d = (Graphics2D)g;
 140 g2d.setRenderingHint
 141 (RenderingHints.KEY_ANTIALIASING,
 142 RenderingHints.VALUE_ANTIALIAS_ON);
 143
 144 Color old = g2d.getColor();
 145
 146 g2d.setColor(Color.WHITE);
 147
 148 g2d.drawString(toString(), (int)getCenterX() - 3, (int)getCenterY() + 3);
 149
 150 g2d.setColor(Color.RED);
 151
 152 g2d.drawString(getAnts().toString(), (int)getCenterX() + getRadius() / 2 + 5,
(int)getCenterY() + getRadius() / 2 + 5);
 153

134

 154 g2d.setColor(old);
 155 }
 156
 157
 158 public void update() {
 159 this.reset();
 160 for(double t = 0; t <= (2 * Math.PI); t += 2 * Math.PI / 50)
 161 addPoint((int) (getX()+getRadius()/2 * Math.cos(t)),(int)(getY()+getRadius()/2 *
Math.sin(t)));
 162 }
 163
 164
 165 public void setLocation(int x, int y) {
 166 this.x = x;
 167 this.y = y;
 168 }
 169
 170 public int getRadius() { return radius; }
 171 public int getX() { return x; }
 172 public int getY() { return y; }
 173
 174 public int getCenterX() {
 175 return getX();
 176 }
 177
 178 public int getCenterY() {
 179 return getY();
 180 }
 181
 182 public List<Ant> getAnts() {
 183 return ants;
 184 }
 185
 186 public Color getColor() {
 187 Color retValue;
 188
 189 if(isNest()) {
 190 retValue = Color.GRAY;
 191 }else if(containsFood()) {
 192 retValue = Color.ORANGE;
 193 }else{
 194 retValue = super.getColor();
 195 }
 196 return retValue;
 197 }
 198}

135

 1/*
 2 * Graph.java
 3 *
 4 * Created on 02 March 2007, 22:52
 5 *dfdf
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12
 13import antgraph.Pheromone.Direction;
 14import antgraph.gui.GraphJFrame;
 15import java.awt.Image;
 16import java.awt.image.BufferedImage;
 17import java.util.ArrayList;
 18import java.util.Collections;
 19import java.util.HashMap;
 20import java.util.List;
 21
 22/**
 23 *
 24 * @author James
 25 */
 26public class Graph {
 27
 28
 29 private List<Node> nodes = new ArrayList<Node>();
 30 private HashMap<Node, List<Node>> adjacencyList = new HashMap<Node, List<Node>>();
 31 private HashMap<String, Edge> edges = new HashMap<String, Edge>();
 32
 33 private boolean isDirty = false;
 34
 35 private List<Ant> ants = new ArrayList<Ant>();
 36
 37 private int c =1;
 38 private char currentChar = 'a' - 1;
 39
 40 public Graph() {
 41 System.out.println(this);
 42 }
 43 public void addAnt(Ant listener) {
 44
 45 ants.add(listener);
 46 System.out.println(ants);
 47 }
 48
 49
 50 public void addNode(Node n) {
 51 nodes.add(n);
 52 }
 53
 54 public void addNode(String o) {
 55 this.addNode(new Node(o));
 56 }
 57
 58 public void addNode() {
 59 this.addNode(new Node(this.getNextChar()));
 60 }
 61
 62 public void addNode(int x, int y) {
 63 Node n = new Node(this.getNextChar(), x, y);
 64 // n.setLocation(x, y);
 65 this.addNode(n);
 66 }
 67
 68 public void addNode(String s, int x, int y) {
 69 Node n = new Node(s, x, y);
 70 //n.setLocation(x, y);
 71 this.addNode(n);
 72 }
 73
 74 public void removeNode(Node n) {
 75 System.out.println("Removing " + n + "...");
 76
 77

136

 78 for(Node node : getNodes()) {
 79 removeEdge(node, n);
 80 }
 81
 82 nodes.remove(n);
 83
 84 }
 85
 86 public int getNumberOfVertices() {
 87 return nodes.size();
 88 }
 89
 90 public void addEdge(Node a, Node b) throws NoSuchNodeException {
 91
 92
 93 if(hasEdge(a, b) || a.equals(b)) return;
 94 System.out.println("Creating an edge between " + a + " and " + b);
 95 Edge e = new Edge(a, b);
 96
 97 edges.put(a.toString() + b.toString(), e);
 98
 99 if(!nodes.contains(a))
 100 throw new NoSuchNodeException("No such node: " + a);
 101 if(!nodes.contains(b))
 102 throw new NoSuchNodeException("No such node: " + b);
 103
 104 if(!adjacencyList.containsKey(a)) {
 105 adjacencyList.put(a, new ArrayList());
 106 }
 107 if(!adjacencyList.containsKey(b)) {
 108 adjacencyList.put(b, new ArrayList());
 109 }
 110
 111 adjacencyList.get(a).add(b);
 112 adjacencyList.get(b).add(a);
 113
 114 }
 115
 116 public Edge getEdge(Node a, Node b) {
 117 if(hasEdge(a, b)) {
 118 if(edges.containsKey(a.toString() + b.toString()))
 119 return edges.get(a.toString() + b.toString());
 120 else
 121 return edges.get(b.toString() + a.toString());
 122 }
 123 return null;
 124 }
 125
 126 public List<Edge> getEdges(Node node) {
 127 List<Edge> edges = new ArrayList();
 128
 129 for(Node n : getAdjacencyList(node)) {
 130 edges.add(getEdge(node, n));
 131 }
 132 return edges;
 133 }
 134
 135 public List<Node> getNodes(Direction direction) {
 136 List<Node> edges = new ArrayList();
 137 for(Edge e : getEdges()) {
 138 if(e.getPheromone().getDirection() == direction) {
 139 if(!edges.contains(e.a()))
 140 edges.add(e.a());
 141 if(!edges.contains(e.b()))
 142 edges.add(e.b());
 143 }
 144 }
 145
 146 return edges;
 147 }
 148
 149 public List<Edge> getEdges(Direction direction) {
 150 List<Edge> edges = new ArrayList();
 151 for(Edge e : getEdges()) {
 152 if(e.getPheromone().getDirection() == direction) edges.add(e);
 153 }
 154

137

 155 return edges;
 156 }
 157
 158 public List<Edge> getEdges() {
 159 return new ArrayList(edges.values());
 160 }
 161
 162 public HashMap<String, Edge> getEdgesMap() {
 163 return edges;
 164 }
 165
 166 public boolean hasEdge(Node a, Node b) {
 167 try {
 168 return adjacencyList.get(a).contains(b) || adjacencyList.get(b).contains(a);
 169 }catch (NullPointerException e) {
 170 return false;
 171 }
 172 }
 173
 174 public void removeEdge(Node a, Node b) {
 175 edges.remove(a.toString() + b.toString());
 176 edges.remove(b.toString() + a.toString());
 177
 178 getAdjacencyList(a).remove(b);
 179 getAdjacencyList(b).remove(a);
 180 }
 181
 182 public void removeEdge(Edge e) {
 183 removeEdge(e.a(), e.b());
 184 }
 185
 186 public List<Node> getAdjacencyList(Node n) {
 187 return adjacencyList.containsKey(n) ? adjacencyList.get(n) : new ArrayList();
 188 }
 189
 190 public HashMap<Node, List<Node>> getAdjacencyList() {
 191 return adjacencyList;
 192 }
 193
 194 public List<Node> getNodes() {
 195 return nodes;
 196 }
 197
 198 public List<GraphComponent> getComponents() {
 199 List l = new ArrayList(nodes);
 200 l.addAll(edges.values());
 201 return l;
 202 }
 203
 204 public void highlight(GraphComponent gc) {
 205 if(gc != null) {
 206 if(gc instanceof Edge)
 207 for(Edge e : getEdges())
 208 e.highlight(false);
 209 else
 210 for(Node e : getNodes())
 211 e.highlight(false);
 212 gc.highlight(true);
 213 }
 214 }
 215
 216 public void highlight(List<Node> nodes) {
 217 try {
 218 nodes.add(nodes.get(0));
 219 for(int i = 0; i < nodes.size() - 1; i++) {
 220 getEdge(nodes.get(i), nodes.get(i + 1)).highlight(true);
 221 nodes.get(i).highlight(true);
 222 }
 223 nodes.get(nodes.size()-1).highlight(true);
 224
 225 }catch (NullPointerException e) {}
 226 }
 227
 228 public void highlightShortest(Node start, Node end) {
 229 Node pNode = null;
 230 Node node = start;
 231 List<Edge> edges;

138

 232
 233 Edge edge = null;
 234
 235
 236 for(Edge edge1 : getEdges())
 237 edge1.setSelected(false);
 238
 239 while(!node.equals(end)) {
 240 edges = getEdges(node);
 241 if(pNode != null) edges.remove(getEdge(pNode, node));
 242
 243 Collections.sort(edges);
 244
 245
 246 edge = edges.get(0);
 247
 248
 249 edge.setSelected(true);
 250 node.setSelected(true);
 251
 252 pNode = node;
 253 node = edge.other(node);
 254
 255
 256 }
 257 }
 258
 259 public void highlightShortest(String a, String b) throws NoSuchNodeException {
 260 highlightShortest(getNode(a), getNode(b));
 261 }
 262
 263 public void highlightShortest(Node a, String b) throws NoSuchNodeException {
 264 highlightShortest(a, getNode(b));
 265 }
 266
 267 public void highlightShortest(String a, Node b) throws NoSuchNodeException {
 268 highlightShortest(b, getNode(a));
 269 }
 270
 271 public void print() {
 272 print(this);
 273 }
 274
 275 public static void print(Graph g) {
 276
 277 System.out.println(" --- Graph --- ");
 278
 279 for(Node n : g.getNodes()) {
 280
 281 System.out.println(n + ": " + g.getAdjacencyList(n));
 282
 283 }
 284 System.out.println(" ------------ ");
 285 }
 286
 287 public void step() {
 288
 289
 290 for(Ant ant : ants) {
 291 ant.move();
 292 }
 293
 294 if(getC() % 3 == 0) {
 295 for(Edge edge : getEdges()) {
 296 edge.getPheromone().decrease();
 297 }
 298 }
 299 c++;
 300
 301 if(getNest().countFood() == GraphJFrame.FOOD) {
 302 //System.out.println(GraphJFrame.getGraph().getNest().countFood());
 303 try {
 304 highlightShortest(getNest(), "l");
 305 }catch (NoSuchNodeException ex) {
 306 System.out.println(ex);
 307 }
 308

139

 309
 310 }
 311 }
 312
 313 public boolean isDirty() {
 314 return isDirty;
 315 }
 316
 317 public void setDirty(boolean value) {
 318 isDirty = value;
 319 }
 320
 321 public char getCurrentChar() {
 322 return currentChar;
 323 }
 324
 325 public void setCurrentChar(char c) {
 326 currentChar = c;
 327 }
 328
 329 public char getNextChar() {
 330 currentChar++;
 331 return getCurrentChar();
 332 }
 333
 334 public Node getNestNode() {
 335 for(Node n : getNodes()) {
 336 if(n.isNest()) return n;
 337 }
 338 return null;
 339 }
 340
 341 public Nest getNest() {
 342 return getNestNode() != null ? getNestNode().getNest() : null;
 343 }
 344
 345 public Node getNode(String s) throws NoSuchNodeException {
 346 for(Node n : getNodes()) {
 347 if(n.toString().equals(s)) return n;
 348 }
 349 throw new NoSuchNodeException("No Such Node: " + s);
 350 }
 351
 352 public int getC() {
 353 return c;
 354 }
 355}

140

 1/*

 2 * NoSuchNodeException.java
 3 *
 4 * Created on 03 March 2007, 21:50
 5 *
 6 * To change this template, choose Tools | Template Manager
 7 * and open the template in the editor.
 8 */
 9
 10package antgraph;
 11
 12/**
 13 *
 14 * @author James
 15 */
 16public class NoSuchNodeException extends Exception {
 17
 18 /** Creates a new instance of NoSuchNodeException */
 19 public NoSuchNodeException(String s) {
 20 super(s);
 21 }
 22
 23}

141

Appendix. C Weekly Diary Reports

Weekly diary reports in chronological order.

First meeting with Sebastian - Friday 13/10/2006, 02:30 PM

Discussed how to start project. We decided I should concentrate on the simulation of ants and decide
whether to continue the project on as a way of solving graph path problems later.

Showed Sebastian my first version, and he suggested the next version ants should come out from a
'nest' and pick up food, then continue walking around randomly until the find the nest where they will
drop off the food.

Sebastian advised to create a skeleton project report in LaTeX to fill in as I progress with the project.
See simulation(s): Version 1.0

Progress - Friday 20/10/2006, 02:00 PM

Showed Sebastian some new versions of the simulation.

Sebastian suggested that the ants are not moving realistically yet. He suggested ants could 'smell' for a
certain radius and food produces a smell for a certain radius around it. This way ants will tend to
move towards food.

The food smell could possible use an inverse square law to determine density as it gets further from
the food.
See simulation(s): Version 2.0 Version 3.0

Meeting with Sebastian - Friday 27/10/2006, 02:00 PM

We discussed further how to make the ants seem more real.

I showed Sebastian two books that I have been using for research and a research paper about the use
of ant systems for web searching: neither of us understood this - we will try to for next week!
See simulation(s): Version 4.0

Progress - Friday 3/11/2006, 02:00 PM

Showed Sebastian latest Ant Simulator: Ants tend to move towards the food due to a food strength
value radiating outward from the food source.

This uses an inverse square law so ants tend to move towards the center.

I've implemented this by having the ants ask the GridSquare for all the surrounding GridSquare's with
a radius of 1 GridSquare. The Ant then sorts these based on Food Strength, and moves the the
GridSquare with the highest Food Strength.

Some problems include ants getting trapped between food sources, and clusters maybe too strong.

I need to implement controls to change values such as the radius of the food strength as the program is
running.

We also discussed the direction the project is going to take after this section is complete. My idea is
the use the Ants to solve shortest path problems. And to do this I will add Obstacles to the Grid, such
that the graph is where the obstacles aren't. It should be possible to draw graphs onto the grid and

142

http://whoyouknow.co.uk/ants/index.php/simulation.php#4.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#3.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#2.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#1.0

have to see the ants move around the grid and hopefully find the shortest path from their nest to the
food source.
See simulation(s): Version 5.0

A Little Progress - Friday 17/11/2006, 02:00 PM

Had been distracted by a Prolog assignment, so hadn't much to show Sebastian!

The FoodClusters was not well recieved by Sebastian. I agree after he told me why.

I will change the Food Strength value to be calculated by each GridSquare individually instead of
using clusters.
See simulation(s): Version 6.0 Version 7.0

Ants Get Stuck! - Friday 24/11/2006, 02:00 PM

Showed Sebastian my latest version with the new FoodStrength calculations.

Sebastian and I agreed this works much better.

I explained the problem of ants getting stuck against obstacles. Sebastian suggested introducing
randomness, so that if an ant encounters and obstacle they randomly choose another direction instead
of just turning around - with this version they are turning around and then going back the same way
because it is the 'best' square for them to choose.

Tasks for next week
• Fix the dancing ant problem
• Get ants to return food to collect food and return it to the nest - Sebastian suggested ants know

where the nest is
• Implement Pheromone trails (this was partially working before and need to get it working

again
See simulation(s): Version 8.0

Meeting - Friday 1/12/2006, 02:00 PM

We discussed problems encountered with my first implementation of the pheromone trail following.
See Split Trail Problem and Bouncing Ant Problem

We discussed solutions and came up with the idea that ants only see ahead of them not in all
directions. See changing ant movement for more details.

Some problems solved - Thursday 7/12/2006, 02:00 PM

I showed Sebastian the implementation of new movement algorithm - he especially liked how the ants
walked around each other.

There are still some problems with the algorithm and the move() method in the Ant class needs
rewriting.

I showed Sebastian another ant simulation and he liked how the ants on the other simulation move a
lot smoother than mine which makes them look more like ants. I will try to make the movement of my
ants smoother.

We also took note that there is no use of Food Strengths in the other simulation and pheromones
spread further and dissipate quicker than in mine. There version works very well.

143

http://website.lineone.net/~john.montgomery/demos/ants.html
http://whoyouknow.co.uk/ants/page.php?id=6
http://whoyouknow.co.uk/ants/page.php?id=5
http://whoyouknow.co.uk/ants/page.php?id=1
http://whoyouknow.co.uk/ants/index.php/simulation.php#8.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#7.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#6.0
http://whoyouknow.co.uk/ants/index.php/simulation.php#5.0

Last Meeting of Term 1 - Friday 15/12/2006, 02:00 PM

Prolog took most of my time this week again!

We discussed what should be done over the Christmas break. The aim is to finish the main
programming over this time, in order to have time to experiment and write up over the next term.

One of the main tasks is to re-write the move() method, in the Ant class. It needs some thought before
actually being implemented to get it right.

Another, less important, task is to create a smoother moving animation. I believe the main problem
causing this is the amount of 'work' each ant has to do every time it moves e.g. it looks at the
surrounding squares, sorts them etc. The use of Vector's for this probably slows it down, and it may be
needed to use arrays instead. This is not as important though as it does not effect the algorithms, it
would just make the simulation look more like real ants (Am I trying to create realistic ants, or model
ant behaviour? I'd say the latter - the model does not have to be super-realistic, just borrow ideas from
nature).

Next will be to implement some kind of graph system; a maze like system - where the graph will be
'where the obstacles are not'. This cannot really work until the ants are actually behaving some-what
like real ants.

Not much progress - Thursday 8/02/2007, 03:00 PM

Many movement algorithm rewrites, but not much progress. Discussed possible improvements to the
algorithm.

Project Direction - Thursday 1/03/2007, 03:00 PM

Showed Sebastian the latest version of the ant simulator. There are many problems with it!
Sebastian was worried about the direction of the project and suggested that we move on to graph
algorithms, as most of what is happening now is tweaking the existing movement algorithm to stop it
getting stuck at obstacles!
We realised that implementing a graph structure and developing an ant algorithm using this should be
simpler, as there are no obstacles involved.
We discussed the MUTE P2P routing algorithm description and decided to based the new ant
algorithm on this idea.
Tasks for next week: implement a graph data structure, explain the new ant algorithm.

Ants 2.0 - Thursday 8/03/2007, 03:10 PM

I spent the last week working on part 2.0 of my project - implementing a graph and getting ants to
find the shortest path between two points.
I've implemented a gui that allows a user to create a graph on screen by placing nodes and creating
edges between those nodes. Nodes and edges can be added and removed, and nodes can be dragged
around. The length of the edges are calculated and shown. Printing is also available by pressing 'p'.
Sebastian was pleased with the graph application and we discussed what to do next, in terms of
getting ants to move around the graph and find the shortest path between two points.
Wed decided to base the idea on the one from the MUTE application previously described. The
algorithm involves two kinds of trails - those going from nest to food, and those going from food to
nest. Ants looking for food will like to follow nest to food trails, while those carrying food will like to
follow food to nest trails. Trails evaporate over time and the strength is determined by how many ants
have laid some trail.
We realised there could be difficulty implementing this for a general weighted graph, and decided to
first implement where all weights are 1.

144

The difficulty is caused because ants should take longer to reach nodes that are further away, but this
means that after each iteration an ant cannot instantaneously move from its current node to the next
node as this would ignore the distances. An idea to implement this would be to have ants actually
move along edges at a constant speed. Ants travelling along longer edges will take longer to reach
their destination nodes, whereas ants travelling along shorter nodes will reach their destination
quicker. To simplify this problem for the first version, we decided to have all weights equal to one so
that each ant can travel the same distance in the same time.

Problems with Ants 2.0 - Friday 16/03/2007, 03:00 PM

After lengthy discussion during this meeting we came across a problem with the algorithm.
It is entirely possible that ants will go the long way round initially, and therefore lay a trail the long
way to the food. The shortest path will not be found. After some different variations we came up with
breadth-first search as the solution! Something wasn't quite right!
It was decided to do some more research into the MUTE application, to learn more about their
implementation
Addition: I realised that MUTE uses a discovery algorithm, akin to breadth-first search to establish a
route before using ant based algorithms for routing.

Last Meeting - Thursday 26/04/2007, 02:00 PM

Project has gone very well. Sebastian is pleased with the report progress so far. Almost complete.
Software not completely functional yet.

145

Appendix. D Project Description Report

The project proposal.

Artificial Ants: Using Collective Intelligence

 To Create E cient Networksffi
 A Final Year Project Proposal

 James Hamilton

 ma301jh@gold.ac.uk

 March 29, 2006

Contents

 1.1 Introduction . 1

 1.1.1 Using Ant Behavior 1

 1.2 Hypothesis . 1

 1.3 Objectives . 1

 1.4 Background 2

 1.4.1 The Traveling Salesman Problem (TSP) 2

 1.4.2 Ant Behaviour 2

 1.5 Method 3

 1.5.1 Gantt Chart 4

 1.6 Conclusion . 4

1

 Abstract

 Computer Scientists are always looking for more e cient algorithms toffi
solve problems in the field. To aid in the creation of new, more e cient algo-ffi
rithms we can take a leaf out of nature’s book, where there are already many

examples of e cient collective behavior. Taking ants as an example: How doffi
ants find their food? How do they walk in a line, often the shortest distance,

towards their food? Can the behavior of ants be used to find the shortest

distance around a computer network e ciently? How can myrmecology1 andffi
computer science be combined?

 1.1 Introduction

 Researchers have been looking into the use of Artificial Ants to improve

 network communications for sometime, and the results have shown that ant

 foraging behavior used as a basis for modeling network traversal algorithms

 are very e cient[2]. Nature has already solved many problems that theseffi
 researchers are trying to solve and/or improve. Ants are very good at finding

146

 the shortest distance between their nest and a food source, and are able to

 work together e ciently.ffi
1.1.1 Using Ant Behavior

 So ants can find the shortest path between their nest and food - how does this

 help computer scientists? As stated before a model based on ant foraging

 behaviour can be used to solve the traveling salesman problem for certain

 graphs. If a computer network is modeled using a graph with a computer at

 each node, then the ants can find their way around the computer network

 more e ciently than other algorithms (see [2] for actual results of otherffi
 researcher’s experiments).

1.2 Hypothesis

 The main hypothesis to be proven is that Ant Colony Optimization algo-

 rithms will prove more e cient than other algorithms for solving the travelingffi
 salesman problem on a set of test graphs.

1.3 Objectives

 Software – A simulation of ant behaviour, by using biological studies as a

 basis for creating simple rules that govern the behaviour of the

 computerised ants.

 – A graph package in Java, to later be used for testing the TSP

 algorithms.

 – A graphical interface to the graph package, which allows the user

 to create custom graphs and to see graphically the shortest path.

Algorithms – Heuristic algorithms such as Nearest Neighbour and Insertion al-

 gorithms.

 – Ant-based algorithms.

 Tests – Implement test graphs using the graph package.

 – Run tests and analyse results to show di erence between di erentff ff
 algorithms.

Applications – Research applications of ant algorithms in the field of computing.

 – Implement an application of the ant algorithms (e.g. network

 software)

 – Research the use of ant algorithms in other fields.

 1.4 Background

 1.4.1 The Traveling Salesman Problem (TSP)

 The TSP involves finding the cheapest route for a salesman traveling to

147

 many cities given the known cost for traveling between each city. It is one of

 the most intensely studied problems in mathematical computing, due to its

 usefulness and relevance to computer networks. Even so, an e ective solutionff
 still evades us[1]. Using a graph as a model for a computer network, where

 each node is a device on the network, this problem can be applied to find

 the shortest distance around the network. If an e cient algorithm can beffi
 found to traverse the entire graph, then this solution could also be applied

 to computer networks.

 1.4.2 Ant Behaviour

 Ants are stupid. But collectively ants behave intelligently.

 Ants are studied due to their collective intelligence, as simple things work-

 ing together to create an intelligent whole. Most ant species forage for food

 collectively.

 How ants behave[4]:

 • They randomly search the area for food.

 • If they find food, they will lay a pheromone trail back to the nest.

 • If an ant finds another trail it will follow it.

 • Ants are attracted to the strongest trails.

 • Trails evaporate at a constant rate - so the shorter the trail the stronger

 it will be.

 • Ants will strengthen trails as they follow them - so the more ants the

 stronger the trail, the more ants following the trail, then it will become

 even stronger. This results in a positive feedback loop.

 • Ants only lay a pheromone trial while they are carrying food - so as

 soon as the food is depleted ants will stop laying the trail and it will

 evaporate. Then ants will cease to follow it and search for other food

 sources.

 Although I intend to base the ant routing algorithms on nature, the be-

haviour will need to be slightly modified so that ants do not get trapped in

loops. This may happen when pheromone trails become strong in a loop pat-

tern and due to positive feedback any ant finding the loop will get trapped

[3].

1.5 Method

I will start my project by first conducting research into my myrmecology,

followed by the implementation of this behaviour using Java.

 Following this I will research graph theory the expand my knowledge in

148

the area, as my project is based on this. I will then implement a graph

package in Java, which will allow the creation of connected graphs that will

represent a computer network, for example, in later stages of the project.

After implementing the graph package it will be necessary to implement

several test graphs to ensure that everything is working correctly.

 The implementation of a graphical user interface next will allow easier

creation of graphs, and also allow the shortest path around the graph to be

shown graphically. This will be more user friendly. After implementation,

the previous tests can be ported to the graphical program to check that the

output works. New graphs should also be created using the user interface,

to check that the input works.

 After the software needed to create and manipulate graphs is complete,

it will be time to start researching the traveling problem and algorithms

used to solve it. Then next step is to then implement these algorithms

and test them on various test graphs. After the usual algorithms such as

Nearest Neighbour, the time will come to research and implement ant based

algorithms and compare the di erent algorithms.ff

 Once the main ant algorithms have been implemented I will be able to

research a use of these algorithms, for example computer networking, and

implement a solution using the ant-based algorithms.

 Finally I will evaluate my project and its results, and draw conclusions

from mine and others works based on what I have learned during the course

of the project.

1.5.1 Gantt Chart

 Figure 1.1: Gantt Chart showing a summary of the project plan.

1.6 Conclusion

Artificial Ants will provide an interesting and challenging project, which will

help me further my knowledge of computing and mathematics.

 This will make a challenging project because it will involve a lot of back-

ground research into algorithms, graph theory, the traveling salesman prob-

lem, myrmecology, computer networks and related fields that I may need to

investigate.

 The implementation of algorithms to solve the traveling salesman problem

for the set of test graphs should provide interesting results for the di erentff
algorithms and allow me to evaluate the e ciency of those algorithms.ffi

149

 Furthermore the undertaking of this project will provide an interesting

insight into the field of myrmecology, and the application of nature in com-

puting.

 Due to the many places that shortest paths need to be calculated (for

example, calculating the shortest route for a delivery company) the project

will allow for further research into these other fields and is not just restricted

to routing in computer networks.

Bibliography

[1] William Cook. Travelling salesman problem.

 http://www.tsp.gatech.edu/.

[2] Dorigo and Gambardella. Ant colonies for the travling salesman problem.

 1996.

[3] Dorigo and Stutzle. Ant Colony Optimization. The MIT Press, Mas-

 sachusetts Institute of Technology (MIT), Cambridge, Massachusetts,

 2004.

[4] Mitchel Resnick. Turtles, Termites, and Tra c Jams. Explorations Inffi
 Massively Parallel Microworlds. The MIT Press, Massachusetts Institute

 of Technology (MIT), Cambridge, Massachusetts, 1994.

150

	Introduction
	Summary of Application Development
	Ant World Simulator
	Ant World Graph

	Background
	Ant Behaviour
	The double bridge experiment

	Swarm Intelligence
	Ant Colony Optimization

	Peer-to-Peer Networking
	Ad-Hoc Networking

	Part 1: Simulating Ant Behaviour
	Ant World
	Ant Movement
	Proposed Software Architecture
	Technical Considerations

	Ant World Simulator
	Version 1
	Version 2
	Version 3
	Version 4
	Version 5
	Versions 6 and 7
	Version 8
	The Dancing Ant Problem

	Version 9
	Stop Ants Dancing

	Version 9.1
	Version 10
	Version 11
	The Split Trail Problem
	The Bouncing Ant Problem

	Version 12
	Solving The Split Trail and Bouncing Ant Problems

	Version 13
	Version 14
	Time for ants to collect 29 pieces of food
	Time for ants to collect 81 pieces of food

	Version 15
	Time for ants to collect 29 pieces of food

	Version 15.1
	Time for ants to collect 29 pieces of food

	Version 16
	Version 17.1

	Ant Maze
	Conclusion to Part 1
	Improvements and Future Work

	Part 2: Applications of Ant Behaviour
	Why ant algorithms?
	Proposed Software Architecture
	Technical Considerations

	Ant Graph World
	Version 1
	The implementation

	Version 2
	Version 3
	Version 4
	A short description of classes
	Ant
	Food
	Pheromone
	Node
	Nest
	Edge
	GraphComponent
	Graph
	GraphJFrame

	The Algorithm
	Test Graphs
	Double Bridge Graph
	The Default Test Graph
	Loop Problems

	Conclusion to Part 2
	Improvements and Future Work
	Two Phase Algorithm
	Route Discovery
	Message delivery

	Conclusion
	Bibliography
	Appendix. AAccompanying Software
	Appendix. BSource Code
	Ant World Simulator
	Ant Graph World

	Appendix. CWeekly Diary Reports
	First meeting with Sebastian - Friday 13/10/2006, 02:30 PM
	Progress - Friday 20/10/2006, 02:00 PM
	Meeting with Sebastian - Friday 27/10/2006, 02:00 PM
	Progress - Friday 3/11/2006, 02:00 PM
	A Little Progress - Friday 17/11/2006, 02:00 PM
	Ants Get Stuck! - Friday 24/11/2006, 02:00 PM
	Meeting - Friday 1/12/2006, 02:00 PM
	Some problems solved - Thursday 7/12/2006, 02:00 PM
	Last Meeting of Term 1 - Friday 15/12/2006, 02:00 PM
	Not much progress - Thursday 8/02/2007, 03:00 PM
	Project Direction - Thursday 1/03/2007, 03:00 PM
	Ants 2.0 - Thursday 8/03/2007, 03:10 PM
	Problems with Ants 2.0 - Friday 16/03/2007, 03:00 PM
	Last Meeting - Thursday 26/04/2007, 02:00 PM

	Appendix. DProject Description Report

