The Binary Number System

 aka The Base-2 Number System
Aims

- Understand the basics of the binary number system
- Convert binary numbers to decimal numbers
- Convert decimal numbers to binary numbers

Decimal Revision Activity

- Place the squares on your desk in the correct order
- Fill in the blank square

Decimal Revision Activity

- Place the squares on your desk in the correct order
- Fill in the blank square
- Place counters on the squares to represent the 4 digit number 3126

3126

1000
 100
 10
 1 3
 1
 2
 6
 3×1000

3126

1000 100
 10
 1 3
 1
 2
 6
 $3 \times 1000+$ 1×100

3126

1000 100
 10
 1 3
 1
 2
 6

$3 \times 1000+$
$1 \times 100+$
2×10

3126

1000 100
 10
 1 3
 1
 2
 6

$3 \times 1000+$
$1 \times 100+$
$2 \times 10+$
6×1

3126

1000 100
 10
 1 3
 1
 2
 6

$3 \times 1000+$
$1 \times 100+$
$2 \times 10+$
$6 \times 1=3126$

Binary (base-2) Number System

- In the decimal (base-10) number system:
- Each new column is 10 times the previous column value.
- There are 10 numbers ($0-9$).

Binary (base-2) Number System

- In the decimal (base-10) number system:
- Each new column is 10 times the previous column value.
- There are 10 numbers ($0-9$).
- In the binary (base-2) number system:
- Each new column is ? times the previous column value.
- There are ? numbers (? - ?)

Binary (base-2) Number System

- In the decimal (base-10) number system:
- Each new column is 10 times the previous column value.
- There are 10 numbers ($0-9$).
- In the binary (base-2) number system:
- Each new column is 2 times the previous column value.
- There are ? Numbers (? - ?)

Binary (base-2) Number System

- In the decimal (base-10) number system:
- Each new column is 10 times the previous column value.
- There are 10 numbers (0-9).
- In the binary (base-2) number system:
- Each new column is 2 times the previous column value.
- There are 2 numbers ($0-1$)
- Known as "binary digits" or "bits"

Conversion Activity

- convert binary to decimal
- convert decimal to binary
- e.g. what is 1101 in decimal
- e.g. what is 9 in binary

Worksheet

- Pick a decimal number (random, age, door number, etc) write the binary in the boxes on the worksheet.
- Swap worksheets with the person next to you.
- Convert their binary number to decimal.
- Did you get their number correct?
- Try a longer binary number.

What's the point?

- Binary is simple - only 2 different digits.
- Computers are made of millions of tiny electronic switches (transistors).
- So what?

What's the point?

- Binary is simple - only 2 different digits.
- Computers are made of millions of tiny electronic switches (transistors).
- We can easily represent 0s and 1s using switches.
- $0=o f f, 1=o n$
"There are 10 kinds of people in the world those that understand binary, and those that don't."

