
SCADA STATISTICS MONITORING USING THE ELASTIC STACK

(ELASTICSEARCH, LOGSTASH, KIBANA)

James Hamilton, Brad Schofield, Manuel Gonzalez Berges, Jean-Charles Tournier

CERN, Geneva, Switzerland

Abstract

The Industrial Controls and Safety systems group at

CERN, in collaboration with other groups, has developed

and currently maintains around 200 controls applications

that include domains such as LHC magnet protection, cryo-

genics and electrical network supervision systems. Mil-

lions of value changes and alarms from many devices are

archived to a centralised Oracle database but it is not easy

to obtain high-level statistics from such an archive. A sys-

tem based on Elasticsearch, Logstash and Kibana (the Elas-

tic Stack [2]) has been implemented in order to provide easy

access to these statistics. This system provides aggregated

statistics based on the number of value changes and alarms,

classified according to several criteria such as time, appli-

cation domain, system and device. The system can be used,

for example, to detect abnormal situations and alarm mis-

configuration. In addition to these statistics each applica-

tion generates text-based log files which are parsed, col-

lected and displayed using the Elastic Stack to provide cen-

tralised access to all the application logs. Further work will

explore the possibilities of combining the statistics and logs

to better understand the behaviour of CERN’s controls ap-

plications.

INTRODUCTION

There are around 200 controls applications maintained by

the Industrial Controls and Safety systems group at CERN.

Managing statistics, logs and detecting misconfigurations

from these applications is difficult. This paper describes

the service that we have implemented in order to more easily

obtain statistics and error logs from all applications through

a centralised web application.

Value Change and Alarms Statistics

Most of the controls applications archive value changes

and alarms to a centralised Oracle database. The history of

values changes and alarms for hundreds of thousands of de-

vices are archived in a centralised Oracle High Performance

Real Application Cluster (RAC), from around 200 controls

applications. Mainly due to the structure of the database

and the huge amount of data it is not easy to view, analyse

or use this data to obtain high-level statistics.

It is not possible to easily obtain, for example, a list of

devices that are archiving an excessive number of value

changes. This is important to detect as it could indicate a

faulty or misconfigured device.

The controls applications also generate alarms and it

should also be possible to easily obtain information on the

number of alarms from each application and device.

WinCC OA Logs

All the controls applications log errors, warnings and

information messages to local log files on the servers on

which they are running. It is difficult to examine these logs

as they are distributed across many servers. For example,

developers of the applications cannot easily or search these

logs. It should be possible to collect and examine these logs

centrally without putting an additional load on the produc-

tion systems. In addition, since the log files on the servers

are rolling, old log entries are lost when the log files are

overwritten.

TECHNOLOGY

The implementation of the SCADA statistics monitor-

ing service is built on the Elastic Stack [2] – Elasticsearch,

Logstash, Kibana and Filebeat.

Elasticsearch is a distributed database that stores JSON

documents designed specifically for search and an-

alytics of semi-structured data. Unlike a relational

database management system it is schema-free al-

though it is not schema-less (like MongoDB for exam-

ple) meaning that it is not required to define the types

(string, number, etc) of the data before inserting it but

it is possible to define types. The underlying technol-

ogy is the Apache Lucene text search engine [1].

Logstash is a “data processing pipeline” that can ingest

data from various sources, transform it and send it to

various consumers; Elasticsearch is one of the many

consumers that can be used with Logstash.

Figure 1: Value Change and Alarm Statistics Dashboard

Kibana is a web based visualisation tool that integrates

with Elasticsearch to provide easy ways to navigate and

visualise data, using a variety of graphs, charts and ta-

bles. See figure 1 for an example of a Kibana dash-

board.

Filebeat is one of the many lightweight ‘data shippers’

available as part of the Elastic Stack known as Beats.

Beats data shippers are single purpose and designed

to be installed on the machine that generates the data

without having any impact on the performance of

the machine. Filebeat reads text-based log files and

forwards them either directly to Elasticsearch or to

Logstash.

The Elastic Stack is open source but certain features are

available only as part of the commercial X-Pack extension;

for many use-cases (including ours) the open source stack

is sufficient.

IMPLEMENTATION

Using the Elastic Stack we have implemented a web ser-

vice which allows users to examine, visualise and query

statistics; and to view and search application logs on the

web.

Value Changes & Alarms

We solve the problem of gathering statistics on value

changes & alarms by executing queries daily to obtain ag-

gregate statistics, as shown in Figure 2. The basic statistics

gathered for all applications are:

• The number of value changes per day, for each device

• The number of alarms per day, for each device

• The number of equipment disconnections

• The equipment disconnection durations

So, when users perform queries in Kibana they will not

see live data but aggregated data from the previous days.

Apart from those listed above, some applications require

domain specific reporting which means running other spe-

cialised queries.

Figure 2: Logstash setup for collecting statistics

Each JSON document in Elasticsearch contains the count

of value changes or alarms, and metadata such as the do-

main, application and device names. This allows building

visualisations in Kibana at the domain, application or de-

vice level.

We execute the queries using Logstash and the logstash-

input-jdbc plugin [4] which allows queries to be scheduled

for daily execution for each application1. This instance

of Logstash is always running, waiting for the scheduled

queries to be executed.

WinCC OA Logs

In order to collect the text-based logs from every appli-

cation, which are spread across many servers, we use File-

beat [3]. This is a lightweight application that is designed to

read log files without putting too much load on the system

which is a production machine.

Filebeat itself does very little processing – it’s main task

is to watch a folder of files for changes and forward the

changes, line-by-line, to Logstash.

Logstash instances are awaiting input from Filebeat in-

stances. Logstash is concerned with receiving lines from a

log file, collating multi-line messages and parsing the text

into a structured JSON message; the structured JSON mes-

sage is then sent to Elasticsearch for storage.

Figure 3: Logstash setup for collecting logs

The main challenge with parsing log files generated by

the controls applications is their unstructured nature and

the variety of different formats. We make heavy use of

the Logstash filter called grok to convert these unstructured

log entries into structured documents for storing in Elastic-

search.

An example of a basic WinCC OA log entry is shown in

listing 1; this is a log entry composed of several fields that

we are interested in parsing. We can use a regex pattern to

extract the WinCC OA manager, timestamp, severity, error

code and message.

WCCOAui (2) , 2016 . 04 . 05 1 3 : 4 7 : 1 5 . 0 7 0 , PARAM, SEVERE, 19 , The a t t r i b u t e does no t

e x i s t i n t h i s c o n f i g

Listing 1: Example WinCC OA log

1 each application stores data in its own separate schema but within the

same database

The biggest problem is the huge variety of non-standard

log files generated by the controls applications. We attempt

to parse as many, as correctly as we can but cannot al-

ways guarantee that every message will be parsed correctly.

There are around 80 different regular expressions that are

used depending on the type of log file and most log file types

require trying multiple regular expressions until a match is

found. In any single type of log file there could be, for exam-

ple, differently formatted dates and various forms of error

message.

A useful tool to help create such regular expressions is

the online Grok Constructor tool [9] which enables them to

be created incrementally from example log entries.

Figure 3 shows the Logstash pipeline for collecting and

parsing the WinCC OA logs – we divide the pipeline into

two: the shipper and the indexer. The shipper receives log

messages from Filebeat and concatenates multi-line mes-

sages. The concatenated messages are sent to a queue2 and

one or more indexers read logs from the queue, parse them

and send the structured log entry to Elasticsearch. The main

advantage of using a queue is that we can easily scale up the

parsing simply by adding more indexers.

Logstash Configuration Generator

Soon after we started development of the service using

the Elastic Stack, we realised that the Logstash configura-

tions became unmanageable – especially due to the high

number of SQL queries that we require (currently ∼500)

where each query requires a separate entry within the con-

figuration file.

To solve this problem we developed a Python applica-

tion that generates our configs (see Figure 4). The Logstash

Configuration Generator (LCG) uses the Jinja2 template en-

gine [7] which allows us to create templates from which the

configuration files are generated.

Figure 4: Logstash Configuration Generator Architecture

We have created a custom configuration format (encoded

as JSON) that allows us to define reports (and which tem-

plates those reports use) and list the controls applications

for which reports should be generated. The generator will

then generate, for each application and report, a section of

the configuration file.

During execution, the LCG also does some integrity

checks against the Oracle database – to check, for example,

2 we use Redis [6], the open source in-memory data structure store

that the applications listed in the config exist and have the

correct parameters, such as the correct application ID.

We generate files for the Logstash statistics, shipper, in-

dexer and monitor instances. The generated configura-

tion file for the Logstash statistics is the largest and con-

tains approximately 30, 000 lines, comprised mostly of SQL

queries.

We generate one Filebeat configuration file with all the

controls applications log file paths listed – Filebeat will ig-

nore a path if it doesn’t exist – which simplifies the deploy-

ment of the Filebeat configuration.

Logstash Monitoring

We have an additional Logstash instance, known as the

monitor (as shown in figure 3), that collects error logs and

throughput statistics from the other Logstash instances and

queue. This allows us to use a dashboard in Kibana (see

Figure 5) to monitor the status of the setup, for example, to

see errors, the throughput of the shippers & indexers and

the size of the queues.

Figure 5: Logstash Monitoring Dashboard

DEPLOYMENT

We have deployed the service using the OpenStack ser-

vice provided by the CERN IT department which enables

a quick setup and the easy addition/removal of Logstash

indexers. The CERN IT department also provides Elastic-

search as a service.

For redundancy there are two Logstash shippers, two

queues, and three Logstash indexers.

All Filebeat instances will send logs to either of the ship-

pers; while the output from the shippers is sent to the pri-

mary queue or the secondary queue if the first queue is not

available. If the queue becomes full it will reject new inputs

meaning that Logstash will not be able to send any more

logs and therefore the Filebeat instances will stop sending

logs until the queue is cleared.

There are three Logstash indexers that read from the

queues which parse the log entries. We can add as many

indexers as required without any change to any of the con-

figurations.

We use Jenkins [5] to execute the Logstash Configura-

tion Generator application whenever we make changes to

its configuration which will generate the new Logstash and

Filebeat configuration files. We also have Jenkins jobs to

allow us to deploy, restart and reload configurations with a

single click.

SERVICE STATISTICS

The SCADA statistics service has been running for more

than a year now and covers 26 domains comprising 145 ap-

plications. There are around 800, 000, 000 value changes

per day and around 600, 000 alarms per day recorded

across all applications. This means an average of around

2, 000, 000 documents stored in Elasticsearch per day for

value change & alarm statistics (as each JSON document

stores an aggregated count value).

WinCC OA text logs are collected for 142 applications

with around 1 million log entries per day across all appli-

cations. Some applications produce more logs than others

and there are often spikes of log activity (as can be seen at

the bottom of figure 6).

CASE STUDIES

This section describes some specific use cases where the

service has been useful.

Faulty Archiving Configuration

The high level statistics for value changes has proven very

useful in identifying misconfigurations in archive settings

for process data. Since the majority of the 200 control sys-

tems archive their data to a common database cluster, mis-

configurations on any one individual system may be easily

missed.

As an example, the application LHC Circuit which mon-

itors the roughly 1600 power converters for the LHC was

found to have a faulty archiving setting for the reference

voltages of many devices. As an analog value, the voltage

reference would typically be expected to have the customary

deadband filtering.

However, a number of devices had been configured with

‘on change’ archiving, meaning that voltage reference val-

ues were being sent to the archive at their sampling rate

of approximately 2Hz. This translated to over one hun-

dred thousand value changes per day, which stood out very

clearly in the value change statistics. For example, in figure

1 the bar charts are split into slices for each application and

it can be seen which applications have higher numbers of

Figure 6: WinCC OA Log Dashboard

value changes & alarms. Thanks to the service the archive

settings could be corrected for all affected devices.

WinCC OA Log Availability

The statistics service provides a central entry point for ac-

cessing log information for all WinCC OA applications at

CERN (see Figure 6). This is particularly valuable for ap-

plication domains in which the control systems are highly

distributed, which implies that logs are located on many dif-

ferent servers.

Another important feature of the service is that it pro-

vides greater persistence of log entries. Since the WinCC

OA logs are rotated, eventually log entries will be overwrit-

ten and will be lost on the server. This rotation may de-

pend on the rate at which entries are being made in the logs,

which at certain times can be very high. Typically, times at

which the log entry rate is high are also times at which the

system experts are most interested in accessing the log en-

tries, such as during control system upgrades. The service

ensures that all log entries are available for longer periods

of time.

WinCC OA Log Entry Statistics

In addition to simply making the logs available centrally,

the service’s ability to parse the log entries enables statistics

to be created over various entry types. This in turn allows

diagnostics to be made at a high level. As an example, a

large number of log messages related to middleware com-

munication was used to identify the loss of communication

with certain pieces of equipment, which could then be rec-

tified.

Figure 7: Electrical Network Supervision Dashboard

Electrical Network Supervision

The supervision system monitoring the CERN electrical

network has benefited from the service in two different ways

and for two different audiences (figure 7 shows the Electri-

cal network supervision dashboard).

Firstly, it has benefited the operation team in charge of

the electrical network by providing the means to compute

key performance indicators (KPI) such as SAIDI (System

Average Interruption Duration Index) or SAIFI (System Av-

erage Interruption Frequency Index) in order to provide a

quick overview of the level of service provided to the differ-

ent CERN consumers. These KPIs can now be easily com-

puted for the primary equipment (e.g. how often a specific

client has been without power), but also for the secondary

equipment (e.g. how often and for how long a part of the

network was not supervised because of the loss of connec-

tion with the acquisition devices).

Secondly, it has benefited the team in charge of the de-

velopment of the supervision system itself by providing key

indicators related to the log messages created by the sys-

tem. It is therefore an additional tool to detect and diagnose

abnormal situations such as a sudden change in the num-

ber of log messages registered for a particular process. It is

also a complementary tool to the current supervision mech-

anisms as it allows storing & searching log messages for a

longer period than the local logging storage (typically years

vs. days).

This use case goes beyond the original intentions of the

service by doing process related calculations which shows

the usefulness of the service and how further services can

be built on-top of it.

CONCLUSION

Industrial controls applications at CERN produce lots of

data in different areas including an archive of process and

system data and log files. There are many activities going

on to analyse this data and get value from it [8,10] This pa-

per presents a high-level approach where the data is mainly

viewed as aggregated statistics and correlations. Only in

some cases is the actual data processed in detail. This ap-

proach gives good results for the use cases mentioned in the

paper, among others, and has the potential to be extended.

The service presented has been built on a modern state of

the art set of tools – the Elastic Stack – that greatly facili-

tated the task.

FUTURE WORK

There is a huge amount of ‘noise’ in the WinCC OA con-

trols application logs which provides a good candidate for

anomaly detection using machine learning. It is currently

difficult to find the ‘true’ errors when looking through the

log and an automated method of detecting anomalies would

be very helpful for the application developers. One option

to consider is the newly released machine learning features

of X-Pack.

Another X-Pack feature that could greatly improve the

service would be the Alerting component. Currently, users

have to look at the dashboards to diagnose problems but

with the Alerting component we could notify users when-

ever thresholds are exceeded.

Furthermore, we believe that the combination of value

& alarm statistics and application logs could lead to some

interesting results to better understand the behaviour of

CERN’s controls applications. For example, if there are er-

rors in the log there could be corresponding alarms.

REFERENCES

[1] Apache. Lucene. https://lucene.apache.org/core/,

2017.

[2] Elasitc. Elastic stack. https://www.elastic.co/, 2017.

[3] Elastic. Filebeat. https://www.elastic.co/products/

beats/filebeat, 2017.

[4] Elastic. logstash-input-jdbc plugin. https://

www.elastic.co/guide/en/logstash/current/

plugins-inputs-jdbc.html, 2017.

[5] Jenkins. Jenkins. https://jenkins.io/, 2017.

[6] Redis Labs. Redis. https://redis.io/, 2017.

[7] Armin Ronacher and community. Jinja2. http://jinja.

pocoo.org/, 2017.

[8] Piotr Jan Seweryn, Filippo Maria Tilaro, John Bradford

Schofield, and Manuel Gonzalez Berges. Data analytics re-

porting tool for cern scada systems. In 16th International

Conference on Accelerator and Large Experimental Physics

Control Systems, 2017.

[9] Hans-Peter Stőrr. Grok constructor. http://

grokconstructor.appspot.com/, 2017.

[10] F. Tilaro, B. Bradu, M. Gonzalez Berges, F. Varela, and

M. Roshchin. Model learning algorithms for faulty sensors

detection in cern control systems. In 16th International Con-

ference on Accelerator and Large Experimental Physics Con-

trol Systems, 2017.

https://lucene.apache.org/core/
https://www.elastic.co/
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/products/beats/filebeat
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html
https://www.elastic.co/guide/en/logstash/current/plugins-inputs-jdbc.html
https://jenkins.io/
https://redis.io/
http://jinja.pocoo.org/
http://jinja.pocoo.org/
http://grokconstructor.appspot.com/
http://grokconstructor.appspot.com/

	Introduction
	Value Change and Alarms Statistics
	WinCC OA Logs

	Technology
	Implementation
	Value Changes & Alarms
	WinCC OA Logs
	Logstash Configuration Generator
	Logstash Monitoring

	Deployment
	Service Statistics
	Case Studies
	Faulty Archiving Configuration
	WinCC OA Log Availability
	WinCC OA Log Entry Statistics
	Electrical Network Supervision

	Conclusion
	Future work

