
A Survey of Software Watermarking by Register Allocation (for Java Bytecode)

James Hamilton and Sebastian Danicic
Department of Computing

Goldsmiths, University of London
United Kingdom

james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

Abstract—Software watermarking involves embedding a
unique identifier within a piece of software, to discourage
software theft. The global revenue loss due to software piracy
was estimated to be more than $50 billion in 2008. We
survey the proposed register allocation based algorithms for
software watermarking. This family of static watermarks are
constraint-based and embed the watermark in a solution to a
graph colouring problem; the graph colouring is then used to
allocate registers. Register allocation is the process of allocating
program variables to a finite number of CPU registers and a
compiler commonly uses graph colouring to obtain the best
allocation. We describe the existing techniques and highlight
the short-comings of these algorithms, namely that they are
highly susceptible to semantics preserving transformations.

Keywords-software watermarking; register allocation; graph
colouring; program transformation;java; bytecode;

I. INTRODUCTION

Software theft, also known as software piracy, is the act
of copying a legitimate application and illegally distributing
that software, either free or for profit. Legal methods to
protect software producers such as copyright laws, patents
and license agreements [1] do not always dissuade peo-
ple from stealing software, especially in emerging markets
where the price of software is high and incomes are low.
Ethical arguments, such as fair compensation for producers,
by software manufacturers, law enforcement agencies and
industry lobbyists also do little to counter software piracy.
The global revenue loss due to software piracy was estimated
to be more than $50 billion in 2008 [2].

Technical measures have been introduced to protect digital
media and software, due to the ease of copying computer
files. Some software protection techniques, of varying de-
grees of success, can be used to protect intellectual property
contained within Java class-files. Java bytecode is higher
level than machine code and is relatively easy to decompile
with only a few problems to overcome [3].

Software watermarking involves embedding a unique
identifier within a piece of software. It does not prevent
theft but instead discourages software thieves by providing
a means to identify the owner of a piece of software and/or
the origin of the stolen software [4]. The hidden watermark
can be used, at a later date, to prove ownership of stolen
software. It is also possible to embed a unique customer

identifier in each copy of the software distributed which
allows the software company to identify the individual that
copied the software.

In this paper, we examine register allocation based
software watermarking algorithms; these algorithms are
constraint-based static software watermarking techniques.
Figure 14 shows the evolution of this family of algorithms
on which we report previous findings, describe some recent
additions (including a correction to a published algorithm)
and conclude by suggesting a direction for future work.

II. BACKGROUND

A. Software Watermarking

Software watermarks can be broadly divided into two
categories: static and dynamic [5]. The former is embedded
in the data and/or code of the program, while the latter is
embedded in a data structure built at runtime.

A watermark is embedded into a computer program
through the use of an embedder; it can then be extracted by
an extractor or verified by a recogniser. The former extracts
the original watermark, while the latter merely confirms
the presence of a watermark [6]. A watermark recogntion
or extraction algorithm may also been classified as blind,
where the original program and watermark is unavailable,
or informed, where the original program and/or watermark
is available [7].

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recognise
a watermark from a partial program. Semantics preserving
transformations, by definition, result in programs which
are syntactically different from the original, but whose be-
haviour is the same. The attacker can attempt, by performing
such transformations, to produce a semantically equivalent
program with the watermark removed. Redundancy and
recognition with a probability threshold may help with these
problems [8].

The runtime cost of a program with an embedded wa-
termark should not differ signifcantly from the original
program but some transformations applied by the watermark
could have an effect on size and execution time [9]. For
example, Hattanda et al. [10] found that the size of a pro-
gram, watermarked with Davidson/Myhrvold [11] algorithm,

Figure 1: A graph with 4 vertices and 2 colours

Figure 2: Example graph with 5 vertices and 3 colours

increased by up to 24% and the performance decreased by
up to 24%.

Register allocation based software watermarking algo-
rithms are static software watermarking techniques which
do not embed any extra code but add redundancy to the
program by changing the use of registers.

B. Graph Colouring

In graph theory, the simplest form of graph colouring is
a way of colouring the vertices of a graph such that no two
adjacent vertices share the same colour. The graph colouring
problem is NP-complete [12].

Consider the simple graph in figure 1; the graph contains
four vertices and four edges. Vertex a is adjacent to vertices
b and c therefore if a is red then b and c cannot be. Vertex
d, on the other hand, is not adjacent to a and can therefore
also be coloured red. Vertices b and c are therefore coloured
blue. The smallest number of colours needed to colour this
graph is 2. This is known as the chromatic number.

If we add another vertex, e, adjacent to c and d we must
colour this with a third colour; e cannot be blue as it is
adjacent to c and it cannot be red as it is adjacent to d
(figure 2). The chromatic number of graph 2 is therefore 3.

Graph colouring has many real-world applications includ-
ing register allocation in compilers [13].

Listing 1: ’Example Pseudocode’
v1 := 1 + 1;
v2 := 2 + 5;
v3 := 3 + v1;
v4 := v1 + v2;
v5 := v2 + v3;

Figure 3: Example interference graph for listing 1

C. Register Allocation

Register allocation is the process of assigning program
variables to a finite number CPU registers [14]. Programmers
can use any number of variables in their programs but there
are a limited number of CPU registers to actually store the
values of those variables.

An interference graph is used to model the relationship
between the variables in a program method. Each vertex
in the graph represents a variable and an edge between two
variables indicates that their live ranges overlap. Simple put,
a variable is live if it has been computed and will be used
before being recomputed. We colour the graph in order to
minimise the number of registers required and ensure that
two live variables do not share a register.

Definition 1. Variable liveness [13]: A program variable
is considered live at point L in a program P if there is a
control flow path from the entry point of P to a definition of
X and then through L to a use of X at point U, which has
the property that there is no redefinition of X on the path
between L and the use of X at U.

Consider the example pseudocode in listing 1 and it’s
interference graph in 3. From the pseudocode we can see
that variable v5 is not live at the same time as any other
variable and is therefore unconnected in the graph. Variable
v1, on the other hand, is live at the same time v2 and v3 are
live; therefore they are connected in the interference graph.

The graph in figure 3 can be coloured, as shown in figure
4, using 3 colours. This means that the minimum number of
registers needed to store the variables in the sample program
is 3. Variables v1, v4 and v5 can use the same register
because they are not live at the same time.

Figure 4: Example coloured interference graph for listing 1

Listing 2: ’Example Pseudo-Assembly code’
add r1, 1, 1
add r2, 2, 5
add r3, 3, r1
add r1, r1, r2
add r1, r2, r3

The sample program could be converted into pseudo-
assembly code, shown below, where add X, Y, Z adds
together Y and Z and stores the result in X. Y or Z could
be a literal value or the value in a register.

We can see that r1, r2 and r3 correspond to the three
colours in the interference graph.

D. The Java Virtual Machine

The Java Virtual Machine is essentially a simple stack
based machine which can be separated into five parts: the
heap, program counter registers, method area, Java stacks
and native method stacks [15] . The Java Virtual Machine
Specification [16] defines the required behaviour of a Java
virtual machine but does not specify any implementation
details. Therefore the implementation of the Java Virtual
Machine Specification can be designed different ways for
different platforms as long as it adheres to the specification.
A Java Virtual Machine executes Java bytecode in class files
conforming to the class file specification which is part of the
Java Virtual Machine Specification [16] and updated for Java
1.6 in JSR202 [17].

An advantage of the virtual machine architecture is
portability - any machine that implements the Java Virtual
Machine Specification [16] is able to execute Java bytecode
hence the slogan “Write once, run anywhere” [18]. Java
bytecode is not strictly linked to the Java language and there
are many compilers, and other tools, available which produce
Java bytecode [19], [20] such as the Jikes compiler, Eclipse
Java Development Tools or Jasmin bytecode assembler. An-
other advantage of the Java Virtual Machine is the runtime
type-safefy of programs. These two main advantages are
properties of the Java Virtual Machine not the Java language

Figure 5: Java Virtual Machine internal architecture [15]

[20] which, combined, provides an attractive platform for
other languages.

Java stacks are composed of stack frames, each of which
contains the state of one Java method invocation. The
Java virtual machine contains no registers but each method
has access to a local variable table. The compiler has to
allocate each Java method’s variables to local variable slots.
Watermarking by register allocation can be implemented by
changing the uses of the local variable slots. A watermark
could be included in each method in a Java program, or the
watermark could be split and spread throughout the program.

III. THE QP ALGORITHM

The QP algorithm [21] is a constraint-based watermarking
algorithm based on the concept of graph colouring. In
the QP algorithm edges are added to the graph based on
the value of the watermark. When edges are added to an
interference graph the vertices that become connected must
be re-coloured - and they cannot be assigned the same
registers. In other words, we add a new constraint to the
problem (the extra edges) and when we compute the graph
colouring we have a solution which solves the graph colour
problem and one which also includes the watermark.

The QP algorithm was proprosed to embed watermarks
in any graph colouring solution and can be applied to graph
colouring for register allocation to embed watermarks in
software.

The first step in the QP algorithm is to convert the
message into binary, for example convert a string into binary
by using ASCII codes. The next step is to add additional
edges to the interference graph, in such a way that the extra
edges encode the watermark. The QP algorithm requires
that the vertices of the graph are indexed and relies on
the ordering of such indices for embedding and extraction.
The originally published QP algorithm contained a minor

Figure 6: Example interference graph

problem which assumed that every vertex in an arbitrary
graph could contain one bit of information; Zhu et al.
proposed a clarified version of the algorithm [22] shown
in algorithm 1.

Algorithm 1 Clarified QP embedding algorithm

Input: a graph G(V,E), a message M = m0m1. . .
Output: a graph G′(V ′, E′) with embedded message M
copy G(V,E) to G′(V ′, E′)
j = 0
for each bit in message as mi do

if vi has two candidate vertices vi1, vi2 then
j++
if mj = 0 then

add edge (vi, vi1) to E′

else
add edge (vi, vi2) to E′

end if
end if

end for
return G′(V ′, E′)

Definition 2. QP candidate vertices [21]: The nearest two
vertices vi1 and vi2 which are not connected to vi; i2 >
i1 > i (mod n) and (vi, vi1), (vi, vi2) /∈ E and (vi, vj) ∈ E
for all i < j < i1, i1 < j < i2

Figure 6 shows an example intereference graph for a
program (it is not important which program, in these exam-
ples). In order to embed the watermark 10110110102 in the

interference graph we use algorithm 1. Figure 7 shows the
interference graph with dotted watermark edges; for clarity,
these lines are labeled with the watermark value.

For each message bit we take the vertex with the cor-
responding index and look at the next two vertices which
are not connected; if the message bit is 0 we add an edge
between the current vertex and the next unconnected vertex,
otherwise we add an edge to the second unconnected vertex.

For example, the first message bit is 1. Vertex v0 is
connected to vertices v1 and v2 therefore the next two
unconnected vertices are v3 and v4. The message bit to
embed is 1 so we add an edge between v0 and v4. The
next two unconnected vertices after v9 are v0 and v1; we
add an edge between v9 and v0 because the watermark bit
is 0.

The chromatic number of the original interference graph
(figure 6) is 3, while the chromatic number of the water-
marked graph is 4.

In order to extract the secret message we consider all pairs
of coloured vertices which do not have edges between them.
For each pair vi, vj we count how many vertices there are
with indices between i and j which are not connected to vi.

Definition 3. Value of the watermark bit in the QP extrac-
tion algorithm [23]:

1) If n(i, j) = 0, the watermark bit is 0
2) if n(i, j) = 1, the watermark bit is 1
3) otherwise, if n(j, i) = 0, the watermark bit is 0; if

n(j, i) = 1, the watermark bit is 1; else the watermark
bit is undefined.

where n(i, j) is the number of vertices between vi and vj
which are not connected to vi.

For example, consider our watermarked graph in figure
7, in order to extract the watermark we would have to
consider only the colours; the dotted edge information would
be unavailable to us in practise. Between the pair (v0, v4)
there is one vertex, v3, which is unconnected to v0; thus the
message bit is 1.

Qu and Potkonjak include two further embedding al-
gorithms: selecting a maximal independent set (MIS) and
adding vertices & edges. They also perform an experimental
evaluation to compare the difficulty of colouring the original
graphs vs. watermarked graphs, as well as the quality of the
solution. They chose several graphs, including random and
real-life benchmarks to perform the evaluation, and found
that in almost all examples they obtain solutions of the same
quality and with no overhead. Qu and Potkonjak built the
first theoretical framework for analysing watermarking tech-
niques and describe & provide proofs for their techniques.

Myles et al. [24] implemented the QP algorithm using
register allocation; they found that a stricter embedding cri-
teria are required due to the unpredictability of the colouring
of vertices and the fact that one vertex can be used multiple
times. Another, major, flaw in the QP algorithm is that it is

Figure 7: Example interference graph with embedded wa-
termark

possible to insert two different messages into an interference
graph and obtained the same watermark graph [22]. The QP
algorithm, therefore, is not extractable [25], [26].

It has also been shown that the QP graph solution can
be modified in such a way that any message could be
extracted [27]. We can clearly see this from our example,
figure 7: consider the pair (v3, v4); we can see that we could
deduce that a watermark bit 0 is stored in an edge between
these vertices. We know from our embedding that it is not,
however it is impossible to tell this without the watermark
edges. Qu and Potkonjak dismiss this problem, claiming that
it will be hard to build a meaningful message particularily
if the original message is encrypted by a one-way function
[23].

Due to these flaws in the QP algorithm, Myles et al. [24]
proposed an improvement which they call the QPS algorithm

Algorithm 2 QP extraction algorithm

Input: a graph G(V,E) with embedded message M
Output: a message M = m0m1. . .
copy G(V,E) to G′(V ′, E′)
for each pair of unconneted vertices vi, vj do

n = number of vertices not connected to vi between vi
and vj
if n = 0 then
M = M + 0

else if n = 1 then
M = M + 1

else
n = number of vertices not connected to vi between
vj and vi
if n = 0 then
M = M + 0

else if n = 1 then
M = M + 1

else
message bit undefined

end if
end if

end for
return M

.

IV. THE QPS ALGORITHM

The key difference between the QP and the QPS algo-
rithms is the selection of vertices. In the QPS algorithm
triples of vertices are selected such that they are isolated
units that will not effect other vertices in the graph. As
watermark bits can only be inserted where there are coloured
triples the data-rate of this algorithm is far lower than the
QP algorithm.

Definition 4. Coloured Triple [24]: Given a graph G, a
set of three vertices v1, v2, v3 (where v1 < v2 < v3) is
considered a coloured triple if they are vertices in G, are
non-adjacent and they are all the same colour.

Zhu et al. [25] provide clarified versions of the QPS
algorithms which eliminate some ambiguities in the originals
; we use these here and they are shown in algorithms 3 and
4.

Figure 8 shows an example graph with a coloured triple
{b, c, d}. The embedding algorithm is described, in pseu-
docode, in algorithm 3. Figure 9 shows the example graph,
from figure 6, watermarked with 1012 using the QPS algo-
rithm. It is clear that the data-rate is much smaller than QPS;
we can see that only 3 bits could be embedded using this
algorithm.

Myles et al. implemented the QPS algorithm in Sandmark
[28], an open-source tool for the study of software protection

Algorithm 3 Clarified QPS embedding algorithm

Input: a graph G(V,E), a message M = m0m1. . .
Output: a graph G′(V ′, E′) with embedded message M
copy G(V,E) to G′(V ′, E′)
n = |V | - 1
WV = V
j = 0
for all i from 0 to n do

if possible find the nearest two vertices vi1, vi2 in G′

such that:
vi, vi1, vi2 have the same colour
and are a triple in G’ and vi1, vi2 ∈WV .
WV = WV - {vi1, vi2}
j++
if mj = 0 then

add edge (vi, vi1) to E′

else
add edge (vi, vi2) to E′

end if
end for
return G′(V ′, E′)

Algorithm 4 Clarified QPS extraction algorithm

Input: a graph G′(V ′, E′) with embedded message M
Output: a message M = m0m1. . .
copy G(V,E) to G′(V ′, E′)
n = |V | - 1
WV = V
j = 0
for all i from 0 to n do

if possible find the nearest two vertices vi1, vi2 in G′

such that:
vi, vi1, vi2 have the same colour
and are a triple in G’ and vi1, vi2 ∈WV .
WV = WV - {vi1, vi2}
j++
if vi and vi1 have different colours in G′ then
mj = 0
add edge (vi, vi1) to E′

else
mj = 1
add edge (vi, vi2) to E′

end if
end for
return M = m1,m2,. . .mj

Figure 8: Coloured Triple

Figure 9: Example interference graph with embedded wa-
termark using the QPS algorithm

algorithms. They performed a variety of empirical tests to
evaluate their algorithm’s overall effectiveness, examining
five properties: credibility, data-rate, stealthiness, part pro-
tection and resilience. The results showed that the QPS
algorithm has a very low data-rate and is susceptible to a
variety of simple attacks, such as obfuscations. However,
they also conclude that the QPS algorithm is quite stealthy
and is extremely credible. In other words, the watermarks
are hard to detect by an attacker whilst readily detectable
by the watermark author.

V. THE QPI ALGORITHM

The QPS algorithm is an improvement on the QP algo-
rithm, in terms of extractability, however the QPS algorithm
has a very low data-rate. Zhu et al. [25] proposed a further

improvement which they call the QPI algorithm. The QPI
algorithm changes the definition of the nearest vertices
vi1, vi2 to vi and the original QP algorithm used cyclic mod
n order for numbers 1,2,. . . ,n, while QPI uses 1 < 2 < . . .n.

Definition 5. Two candidate vertices for the QPI algorithm
[25]: for a vertex vi of a graph G with |V | = n and a
colouring of G, vi has two candidate vertices vi1 ∈ V and
vi2 ∈ V if i < i1 < i2 ≤ n and vertices vi, vi1, vi2 to
vi have the same colour and (vi, vi2) /∈ E; furthermore,
∀j : i < j < i1 and ∀j : i1 < j < i2 ≤ n, vertices vi and
vj have a different colour.

The QPI embedding and extraction algorithms (see algo-
rithms 5 and 6) uses a new definition of candidate vertices,
coloured triples and also changes the vertex colours. Figure
10 shows the example interference graph from figure 6 with
an embedded watermark 10112. The first watermark bit to
embed is 1 and the first vertex is v0; vertex v0 has two
candidate vertices v3 and v4 - these are the same colour and
aren’t connected to v0. As with the previous algorithms, we
add an edge between v0 and v4 because v4 is the second
candidate vertex and the watermark bit is 1. We then change
the colour of v4.

After we change the colour of v2 in the process of
embedding the second bit we leave v2 without any candidate
vertices. We therefore skip vertex v2 and move on to the next
vertex with candidate vertices.

The QPI extraction algorithm requires the original inter-
ference graph and the watermarked graph in order to extract
the watermark message. We find the candidate vertices from
the original graph, then compare the colours in the water-
marked graph. For example, vertex v0 has two candidate
vertices v3 and v4; v3 is the same colour in the original and
watermarked graph, whereas v4 is a different colour - the
watermark bit is therefore 1.

The QPI algorithm is an improvement on the QPS algo-
rithm with an increased data-rate and it has been shown
that QPI algorithm is extractable, unlike the original QP
algorithm [25].

VI. THE COLOUR CHANGE ALGORITHM

The Colour Change (CC) algorithm [29] is another im-
provement on the QPS algorithm. In the CC algorithm the
colouring function is modified to embed a message, rather
than modifying the interference graph; the modification only
occurs for 1 bits but not 0 bits. The data-rate of the CC
algorithm is higher than that of QPS and QPI because each
vertex in the interference graph can store 1 watermark bit.

Figure 11 shows the example interference graph (from
figure 6) with the watermark 10110110102 embedded; for
clarity, the vertices are annotated with the watermark bits.

The first step in the CC algorithm is to colour the inter-
ference graph to obtain the colouring function γ. We then
adapt the colouring function γ to produce a new colouring

Figure 10: Example interference graph with embedded wa-
termark using the QPI algorithm

Algorithm 5 QPI embedding algorithm

Input: a graph G(V,E) and a message M = m0m1. . .mk

Output: a graph G′ with embedded message M
n = |V | - 1
G’ = G
j = 0
for all i from 0 to n do

if vi has two candidate vertices vi1, vi2 then
j++
if wj = 0 then

add edge (vi, vi1) in G′

change the colour of vi1 to a different colour from
the current colors used in G′

else
add edge (vi, vi2) in G′

change the colour of vi2 to a different colour from
the current colors used in G′

end if
end if

end for
return G’

Algorithm 6 QPI extraction algorithm

Input: an unwatermarked graph G(V,E) and watermarked
graph G′(V ′, E′)
Output: a message M
n = |V | - 1
j = 0
for all i from 0 to n do

if vi has two candidate vertices vi1, vi2 in G then
j++
if vi and vi1 have different colours in G′ then
mj = 0
add edge (vi, vi1) in G
change the colour of vi1 to a different colour from
the current colors used in G

else
mj = 1
add edge (vi, vi2) in G
change the colour of vi2 to a different colour from
the current colors used in G

end if
end if

end for
return M = m0m1. . .mj

function γ′ which includes the embedded watermark (see
algorithm 7). For example, the first watermark bit to embed
is 1 and the original colouring of vertex v0 is yellow; we
choose the lowest possible legal colour (see table I for colour
encodings) to replace red. The only vertices which do not
change colour are the vertices in which a 0 bit will be
encoded.

Colour Encoding
Yellow 1
Blue 2
Red 3
Green 4

Table I

In order to extract the watermark, the CC extraction
algorithm (see algorithm 8) takes the original interference
graph G and the graph colouring function γ generated by
the embedding algorithm. The original graph colouring γ′

is obtained by colouring G which is then compared with
the colours obtained by γ. If the original colouring of a
vertex matches the new colouring then the watermark bit is
1; otherwise the watermark bit is 0.

Vertex 0 1 2 3 4 5 6 7 8 9
γ 1 2 2 1 1 1 1 2 3 3
γ′ 3 2 4 2 1 2 3 2 1 3

Table II

Figure 11: Example interference graph with embedded wa-
termark using the CC algorithm

Table II shows the output of the original colouring func-
tion γ and the new colouring function γ′ for each of the
vertices.

Lee and Kaneko [30] experimentally evaluated their CC
algorithm and found that, on average, it takes 0.75 extra
colours to embed a message in an interefence graph. They
suggest using the CC algorithm for programs which contain
many variables, as the data-rate is equal to the number of
vertices in the interference graph. They introduce a second
algorithm - Color Permutation - for use in programs which
require a large number of registers.

VII. THE COLOUR PERMUTATION ALGORITHM

The Colour Permutation (CP) algorithm [29], [30] uses a
similar idea to the CC algorithm, as they both change the
colouring function for an intereference graph to encode the
watermark bits. The CP algorithm converts the watermark bit
string into a natural number M , and then chooses the M th

permutation of the lexicographically ordered colours to re-
place the original colour. The algorithm uses the relationship
between the factorial number system and lexicographically
ordered permutations [31], [32] to obtain the M th permuta-
tion.

The encoding algorithm is show in algorithm 9. The
published extraction algorithm is incorrect and we provide
a corrected version here (algorithm 10).

The data rate of the CP algorithm is proportional to the
number of colours c, given by log2c!, whereas the data rate
of the CC algorithm is equal to the number of variables
used. We can therefore only store two watermark bits in our

Algorithm 7 Colour Change embedding algorithm

Input: a graph G(V,E) and a message M = m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
if n < k then

abort(’embedding failed’)
else
γ = ColourGraph(G)
for j = 0 to n do

if mj = 1 then
find smallest i such that i 6= γ[j] and i 6= γ[j′] for
any (j, j′) ∈ E such that j′ < j or mj′ = 0
γ[j] = i

end if
end for

end if
return γ

Algorithm 8 Colour Change extraction algorithm

Input: a graph G(V,E), graph colouring function γ
Output: message M
n = |V | - 1
γ′ = ColourGraph(G)
for j = 0 to n do

if γ[j] = γ′[j] then
mj = 0

else
mj = 1

end if
end for
return M = m0m1. . .mn

example interefence graph (figure 6) as it contains 3 colours
(log23! = 2).

Figure 12 shows the example interference graph after
encoding 102 with the CP algorithm. The embedding al-
gorithm first converts 102 into the natural number 1; and
then converts this to the factoradic {1, 0, 0} and obtains
the corresponding permutation {2, 1, 3}. The new colour
permutation is applied to the original interference graph, so
that yellow and blue colours are swapped.

To extract the embedded watermark we perform the op-
posite of the embedding algorithm (see algorithm 10). First
the factoradic {1, 0, 0} is obtained by comparing the original
colouring and the new colouring which is then converted to
the original natural number.

Table III shows the output of the original colouring
function γ and the new colouring function γ′ obtained using
the CP algorithm.

Lee and Kaneko [30] experimentally evaluated their CP
algorithm and found that the embedded watermark is stealthy

Figure 12: Example interference graph with embedded wa-
termark using the CP algorithm

Vertex 0 1 2 3 4 5 6 7 8 9
γ 1 2 2 1 1 1 1 2 3 3
γ′ 2 1 1 2 2 2 2 1 3 3

Table III

and has a high credibility but low-resilience to semantics-
preserving attacks.

The CP algorithm has the advantage that it will never
introduce a new register; however, this means that the
program must already use a large amount of registers in
order to embed a large message. The CC and CP algorithms
cannot embed a watermark consisting of all zeros.

VIII. THE SELECTED COLOUR CHANGE ALGORITHM

Li et al. [33] proposed a more efficient algorithm based on
the CC algorithm which they call Selected Colour Change
(SCC). The SCC algorithm is very similar to the CC
algorithm, however, the efficiency increase is obtained by
only changing the colours of either the 1 or the 0 bits, but
not both. If the occurance of 0 bits is higher than 1 bits in
the watermark then 0 bits are changed; otherwise 1 bits are
changed. The choice of which bits are changed is stored in
a virtual vertex v−1 to allow the embedding algorithm to
extract the watermark.

Figure 13 shows the example intereference graph (from
figure 6) using the SCC algorithm 11 to embed the water-
mark 10110110102. We change the colouring function for
the 0 bits because the watermark string contains four 0 bits
and six 1 bits; we also set the virtual node v−1 to 0 to inform

Figure 13: Example interference graph with embedded wa-
termark using the SCC algorithm

the extraction algorithm of this. We change the colouring
function in the same manner as the CC algorithm; that is, we
choose the lowest possible legal colour as the replacement.

For example, the first bit to embed is 1 therefore we do
not change the colouring function for vertex v0. However,
the next bit is a 0 therefore we so we change the colouring
function to output a different colour for v1. We choose red
because v1 is connected to two yellow vertices and v1 is
already blue (see table I for colour encodings). Table IV
shows the output of the original colouring function γ and the
new colouring function γ′ obtained using the CP algorithm.

Vertex -1 0 1 2 3 4 5 6 7 8 9
γ null 1 2 2 1 1 1 1 2 3 3
γ′ 0 2 1 1 2 2 2 2 1 3 3

Table IV

In order to extract the watermark we observe the value
of the virtual vertex v−1. If γ[−1] = 0 then we assign a
1 to each watermark bit mj where the original colouring
for a vertex j matches the new colouring and a 0 bit if
they differ. Otherwise, if γ[−1] = 1 then we assign a 0
to each watermark bit where the original colouring for a
vertex matches the new colouring and a 1 bit if they differ
(see algorithm 12).

In our example gamma[−1] = 0 so we assign a 1 to each
watermark bit mj where the original colouring for a vertex
j matches the new colouring and a 0 bit where they differ.

Li et al. [33] evaluate their SCC algorithm and compare

Algorithm 9 Colour Permutation embedding algorithm

Input: a graph G(V,E), a message M = m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
M = Σk

i=0mi2
i

γ = GraphColouring(G)
c = max(γ[0], γ[1], . . . , γ[n])
k′ = [log2c!]
if k′ < k then

abort(’embedding failed’)
end if
for all j = 1 to c do
r[j] = M mod (c− j + 1)
M = M ÷ (c− j + 1)

end for
for all h = 1 to c do
u[h] = false

end for
for all j = 1 to c do
cnt = 0
for all h = 1 to c do

if u[h] 6= true then
if cnt = r[j] then
u[h] = true
p[j] = h
break

else
cnt = cnt + 1

end if
end if

end for
end for
for all j = 0 to n do
γ[j] = p[γ[j]]

end for
return γ

the results to the QP, QPS and CC algorithms. They conclude
that their SCC algorithm is equivilent to the CC algorithm
in many ways, including data-rate, stealthiness and cost.
They suggest the SCC algorithm is more efficient than the
CC algorithm because it doesn’t change all the colours in
the interference graph; however, it is not clear how much
the efficiency increase affects watermark embedding in real-
world programs.

IX. FINGERPRINTING VIA REGISTER ALLOCATION

Qu et al. [34] proposed a modification to the QP algorithm
for fingerprinting. Fingerprinting is a class of watermarking
which embeds a unique identifier into each copy of the
software (or music, or films, etc) which allows the origin
of the stolen intellectual property to be identified.

Algorithm 10 Corrected Colour Permutation extraction
algorithm

Input: a graph G(V,E), graph colouring γ
Output: a message M = m0m1. . .mk
n = |V | - 1
γ′ = ColourGraph(G)
c = max(γ[0], γ[1], . . . , γ[n])
for all i = 1 to c do
p[γ′[i]] = γ[i]

end for
for all i = 1 to c do
u[i] = false

end for
for all i = 1 to c do
cnt = 0
for all j = 1 to c do

if u[j] 6= true then
if j = p[i] then
r[i] = cnt
u[j] = true
break

end if
cnt = cnt+ 1

end if
end for

end for
I = 0
for all j = 1 to c do
I = I × j + r[c− j + 1]

end for
M = “”
while I > 0 do
M = M + (I mod 2)
I = I ÷ 2

end while
return M

The generic approach proposed is to generate n solutions
to a graph colouring problem and assign a given solution
to one customer only. This approach guarantees that each
customer will be able to be uniquely identified by the
register allocation generated by their unique inteference
graph colouring.

X. QP ALGORITHMS AND PUBLIC-KEY CRYPTOGRAPHY

It is advisable to encrypt the watermark message before
embedding to prevent an adversery from extracting a wa-
termark, even if they know the extraction algorithm. For
example, if an adversery obtains a program which they know
contains a watermark embedding with the QPS algorithm
they can simply run the QPS extraction algorithm and obtain
the watermark; they could then claim that they inserted the
watermark. Jian et al. [35] propose a technique based on a

Algorithm 11 Selected Colour Change embedding algorithm

Input: a graph G(V,E) and a message M = m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
if n < k then

abort(’embedding failed’)
else
n0 = number of 0 bits in M
n1 = number of 1 bits in M
γ = ColourGraph(G)
if n0 < n1 then
γ[−1] = 0
for j = 0 to n do

if mj = 0 then
find smallest i such that i 6= γ[j] and i 6= γ[j′]
for any (j, j′) ∈ E such that j′ < j or mj′ = 1

γ[j] = i
end if

end for
else
γ[−1] = 1
for j = 0 to n do

if mj = 1 then
find smallest i such that i 6= γ[j] and i 6= γ[j′]
for any (j, j′) ∈ E such that j′ < j or mj′ = 0

γ[j] = i
end if

end for
end if

end if
return γ

combination of RSA public-key encryption [36] and the QPI
algorithm [25]. Simply, they suggest that the watermark bit
string is encrypted before being embedded. If an adversery
extracts the encrypted watermark they will not be able to
decipher it, if the encryption is strong enough.

XI. CONCLUSION

The QP algorithm has been shown to be unextractable [22]
and an implementation of the QPS algorithm has shown that
the algorithm has a low data-rate [37] and is highly susp-
ceptible to semantics-preserving transformation attacks [24].
Any other register allocation based software watermarking
algorithm will also be susceptible to semantics-preserving
transformations. More specifically, any transformation which
alters the interference graph or register allocation will easily
remove a watermark.

Register allocation based algorithms maybe be stealthy
[24], as they do not add any extra code, but we do not

Algorithm 12 Selected Colour Change extraction algorithm

Input: a graph G(V,E), graph colouring function γ
Output: message M
n = |V | - 1
γ′ = ColourGraph(G)
if γ[−1] = 0 then

for j = 0 to n do
if γ[j] = γ′[j] then
mj = 1

else
mj = 0

end if
end for

end if
if γ[−1] = 1 then

for j = 0 to n do
if γ[j] = γ′[j] then
mj = 1

else
mj = 0

end if
end for

end if
return M = m0m1. . .mn

recommended them for protecting software due to their low-
resilience to attacks. However, academic research continues
in this area with the latest register allocation based approach
[33] published this year.

We believe that further research should instead focus on
dynamic software watermarking techniques which, in theory,
should be resilient to semantics-preserving transformations;
thus providing a robust technique for the protection of
software.

REFERENCES

[1] G. Cronin, “A taxonomy of methods for software piracy
prevention,” Department of Computer Science, University of
Auckland, New Zealand, Tech. Rep., 2002.

[2] B. S. Alliance, “Sixth annual BSA and IDC global software
piracy study,” Business Software Alliance, Tech. Rep. 6,
2008.

[3] J. Hamilton and S. Danicic, “An evaluation of current java
bytecode decompilers,” in Ninth IEEE International Work-
shop on Source Code Analysis and Manipulation, vol. 0.
Edmonton, Alberta, Canada: IEEE Computer Society, 2009,
pp. 129–136.

[4] G. Myles, “Using software watermarking to discourage
piracy,” Crossroads - The ACM Student Magazine, 2004.
[Online]. Available: http://www.acm.org/crossroads/xrds10-3/
watermarking.html

[5] C. Collberg and C. Thomborson, “Software watermarking:
Models and dynamic embeddings,” in Principles of Pro-
gramming Languages 1999, POPL’99, Jan. 1999. [Online].
Available: http://www.cs.auckland.ac.nz/collberg/Research/
Publications/CollbergThomborsonLow99a/index.html

[6] W. F. Zhu, “Concepts and techniques in software water-
marking and obfuscation,” PhD Thesis, The University of
Auckland, 2007.

[7] W. Zhu, “Informed recognition in software watermarking,” in
Proceedings of the 2007 Pacific Asia conference on Intelli-
gence and security informatics. Chengdu, China: Springer-
Verlag, 2007, pp. 257–261.

[8] A. Mishra, R. Kumar, and P. P. Chakrabarti, “A method-
based Whole-Program watermarking scheme for java class
files,” 2008. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary10.1.1.116.2810

[9] J. Nagra, C. Thomborson, and C. Collberg, “A functional
taxonomy for software watermarking,” in Aust. Comput. Sci.
Commun., M. J. Oudshoorn, Ed. Melbourne, Australia: ACS,
2002, pp. 177–186.

[10] K. HATTANDA and S. ICHIKAWA, “The evaluation of
davidsons digital signature scheme,” IEICE TRANS. FUN-
DAMENTALS, vol. E87A, no. 1, Jan. 2004.

[11] R. Davidson and N. Myhrvold, “Method and system for
generating and auditing a signature for a computer program,”
Jun. 1996, microsoft Corporation, US Patent 5559884.

[12] R. M. Karp, “Reducibility among combinatorial problems,”
in Complexity of Computer Computations, R. E. Miller and
J. W. Thatcher, Eds. Plenum Press, 1972, p. 85103.

[13] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke,
M. E. Hopkins, and P. W. Markstein, “Register allocation via
coloring,” Computer Languages, vol. 6, no. 1, pp. 47 – 57,
1981.

[14] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools (2nd Edition). Addison
Wesley, Aug. 2006, published: Hardcover.

[15] B. Venners, Inside the Java Virtual Machine. New York,
NY, USA: McGraw-Hill, Inc., 1996.

[16] T. Lindholm and F. Yellin, The Java(TM) Virtual Machine
Specification (2nd Edition). Prentice Hall PTR, Apr. 1999,
published: Paperback.

[17] A. Buckley, E. Rose, A. Coglio, B. S. Corporation,
I. Sun Microsystems, I. Tmax Soft, S. Technologies, and
E. AG, “JSR 202: JavaTM class file specification update,”
2006. [Online]. Available: http://jcp.org/en/jsr/detail?id=202

[18] D. Kramer, B. Joy, and D. Spenhoff, “The java[tm]
platform,” Sun Microsystems, Tech. Rep., May 1996.
[Online]. Available: http://java.sun.com/docs/white/platform/
javaplatformTOC.doc.html

http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.cs.auckland.ac.nz/collberg/Research/Publications/CollbergThomborsonLow99a/index.html
http://www.cs.auckland.ac.nz/collberg/Research/Publications/CollbergThomborsonLow99a/index.html
http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.116.2810
http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.116.2810
http://jcp.org/en/jsr/detail?id=202
http://java.sun.com/docs/white/platform/javaplatformTOC.doc.html
http://java.sun.com/docs/white/platform/javaplatformTOC.doc.html

Fi
gu

re
14

:
E

vo
lu

tio
n

of
R

eg
is

te
r

A
llo

ca
tio

n
B

as
ed

So
ft

w
ar

e
W

at
er

m
ar

ki
ng

.O
va

l
sh

ap
es

re
pr

es
en

t
ne

w
al

go
ri

th
m

s,
w

hi
le

re
ct

an
gu

la
r

sh
ap

es
re

pr
es

en
t

ev
al

ua
tio

ns
.

[19] R. Tolksdorf, “Programming languages for
the java virtual machine JVM,” http://www.is-
research.de/info/vmlanguages/index.html, 2010. [Online].
Available: http://www.is-research.de/info/vmlanguages/index.
html

[20] K. J. Gough and D. Corney, “Implementing languages other
than java on the java virtual machine,” 2001.

[21] G. Qu and M. Potkonjak, “Analysis of watermarking tech-
niques for graph coloring problem,” in Proceedings of the
1998 IEEE/ACM international conference on Computer-aided
design. San Jose, California, United States: ACM, 1998, pp.
190–193.

[22] W. Zhu and C. Thomborson, “Extraction in software water-
marking.” in MM&Sec, S. Voloshynovskiy, J. Dittmann, and
J. J. Fridrich, Eds. ACM, 2006, pp. 175–181.

[23] G. Qu and M. Potkonjak, “Hiding signatures in graph coloring
solutions,” in Information Hiding, 1999, pp. 348–367.

[24] G. Myles and C. Collberg, “Software watermarking through
register allocation: Implementation, analysis, and attacks,”
in International Conference on Information Security and
Cryptology, ser. Lecture Notes in Computer Science, vol.
2971/2004. Springer Berlin / Heidelberg, 2003.

[25] W. Zhu and C. Thomborson, “Algorithms to watermark soft-
ware through register allocation,” ser. Lecture notes in com-
puter science, vol. 3919. Berlin, ALLEMAGNE: Springer,
2006, undefined Anglais.

[26] ——, “Recognition in software watermarking,” in Proceed-
ings of the 4th ACM international workshop on Contents
protection and security. Santa Barbara, California, USA:
ACM, 2006, pp. 29–36.

[27] T. V. Le and Y. Desmedt, “Cryptanalysis of UCLA wa-
termarking schemes for intellectual property protection,” in
Revised Papers from the 5th International Workshop on
Information Hiding. Springer-Verlag, 2003, pp. 213–225.

[28] C. Collberg, “Sandmark,” Department of Computer Science,
Aug. 2004. [Online]. Available: http://www.cs.arizona.edu/
sandmark/

[29] H. Lee and K. Kaneko, “New approaches for software
watermarking by register allocation,” in Proceedings of the
2008 Ninth ACIS International Conference on Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Dis-
tributed Computing. IEEE Computer Society, 2008, pp. 63–
68.

[30] ——, “Two new algorithms for software watermarking by
register allocation and their empirical evaluation,” in Proceed-
ings of the 2009 Sixth International Conference on Informa-
tion Technology: New Generations. IEEE Computer Society,
2009, pp. 217–222.

[31] D. E. Knuth, Art of Computer Programming, Volume 3:
Sorting and Searching (2nd Edition), 2nd ed. Addison-
Wesley Professional, May 1998, vol. 3, published: Hardcover.

[32] J. Arndt, Matters Computational: ideas, algorithms, source
code, 1st ed. Springer, Oct. 2010, to be published.
Free electronic version online. [Online]. Available: http:
//www.jjj.de/fxt/#fxtbook

[33] J. Li and Q. Liu, “Design of a software watermarking
algorithm based on register allocation,” in e-Business and
Information System Security (EBISS), 2010 2nd International
Conference on, 2010, pp. 1–4.

[34] G. Qu and M. Potkonjak, “Fingerprinting intellectual
property using constraint-addition,” in Design
Automation Conference, 2000, pp. 587–592,
citeseer.nj.nec.com/qu00fingerprinting.html.

[35] Z. Jiang, R. Zhong, and B. Zheng, “A software watermarking
method based on Public-Key cryptography and graph
coloring,” in Genetic and Evolutionary Computing, 2009.
WGEC ’09. 3rd International Conference on, 2009, pp. 433–
437. [Online]. Available: http://www.computer.org/portal/
web/csdl/doi/10.1109/WGEC.2009.76

[36] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public-key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126,
1978.

[37] J. Hamilton and S. Danicic, “An evaluation of static java byte-
code watermarking,” in Proceedings of the International Con-
ference on Computer Science and Applications (ICCSA’10),
The World Congress on Engineering and Computer Science
(WCECS’10), San Francisco, Oct. 2010, to appear.

http://www.is-research.de/info/vmlanguages/index.html
http://www.is-research.de/info/vmlanguages/index.html
http://www.cs.arizona.edu/sandmark/
http://www.cs.arizona.edu/sandmark/
http://www.jjj.de/fxt/#fxtbook
http://www.jjj.de/fxt/#fxtbook
http://www.computer.org/portal/web/csdl/doi/10.1109/WGEC.2009.76
http://www.computer.org/portal/web/csdl/doi/10.1109/WGEC.2009.76

	Introduction
	Background
	Software Watermarking
	Graph Colouring
	Register Allocation
	The Java Virtual Machine

	The QP Algorithm
	The QPS Algorithm
	The QPI Algorithm
	The Colour Change Algorithm
	The Colour Permutation Algorithm
	The Selected Colour Change Algorithm
	Fingerprinting via Register Allocation
	QP Algorithms and Public-Key Cryptography
	Conclusion
	References

