
An Empirical Evaluation of Java Decompilation and Intellectual

Property Protection via Software Watermarking

MPhil Transfer Report

James Hamilton
Supervisor: Sebastian Danicic

Goldsmiths, University of London
United Kingdom

1

Abstract

Decompilation of Java bytecode is the act of transforming Java bytecode to Java source code. Al-
though easier than that of decompilation of machine code, problems still arise in Java bytecode decompi-
lation. These include type inference of local variables and exception-handling. We evaluate the currently
available Java bytecode decompilers using an extension of the criteria used in a previous original study.
Although there has been a slight improvement since this study, it was found that none passed all of the
tests, each of which were designed to target different problem areas.

Decompilation and other attacks on software are problems for the software industry, with the global
revenue loss due to software piracy estimated to be more than $50 billion in 2008. We present a survey
of a specific software protection techniques - software watermarking - in the context of Java decompilers.

Software watermarks can be used to prove ownership of stolen software. However, many watermarks
are easily removed rendering their protection useless.

We evaluate static watermarking techniques, highlight their failings and present directions for future
work.

1

List of Publications

Refereed Conference Papers

2010 An Evaluation of Static Java Bytecode Watermarking (James Hamilton, Sebastian Dani-
cic), In Proceedings of the International Conference on Computer Science and Applications (ICCSA’10),
2010.

Refereed Workshop Papers

2009 An Evaluation of Current Java Bytecode Decompilers (James Hamilton, Sebastian Dani-
cic), In Ninth IEEE International Workshop on Source Code Analysis and Manipulation, IEEE
Computer Society, volume 0, 2009.

2

3

Contents

1 Introduction 12
1.1 Background . 13

1.1.1 Java and the Java Virtual Machine . 13
1.1.2 Decompilation . 14
1.1.3 Software Watermarking . 15

1.2 Overview Of This Report . 18

2 An Evaluation of Current Java Bytecode Decompilers 19
2.1 Java Decompilation Example . 19
2.2 The Decompilers . 25

2.2.1 Mocha . 25
2.2.2 SourceTec (Jasmine) . 25
2.2.3 SourceAgain . 25
2.2.4 ClassCracker3 . 25
2.2.5 Jad . 25
2.2.6 JODE . 25
2.2.7 jReversePro . 26
2.2.8 Dava . 26
2.2.9 jdec . 26
2.2.10 Java Decompiler . 26
2.2.11 NMI Code Viewer . 26
2.2.12 jAscii . 26

2.3 Problems with Java Decompilation . 27
2.3.1 Casting . 27
2.3.2 Inner Classes . 27
2.3.3 Type Inference . 27
2.3.4 Control Flow . 28
2.3.5 Exceptions . 28
2.3.6 Variable Re-Use . 33
2.3.7 Arbitrary bytecode . 33

2.4 Empirical Evaluation . 34
2.4.1 Test Programs . 34
2.4.2 Measuring the Effectiveness of Java Decompilers 44
2.4.3 Summary of Results . 47

2.5 Discussion of Results . 50
2.5.1 ClassCracker3 . 50
2.5.2 Dava . 50
2.5.3 Jad . 51
2.5.4 Java Decompiler . 52
2.5.5 jdec . 53
2.5.6 JODE . 54
2.5.7 jReversePro . 55
2.5.8 Mocha . 56
2.5.9 SourceAgain . 57

4

2.5.10 SourceTec (Jasmine) . 58
2.6 Conclusion and Future Work . 59

3 A Survey of Static Software Watermarking 61
3.1 Register Allocation Based Watermarks . 63

3.1.1 Background . 63
3.1.2 The QP Algorithm . 67
3.1.3 The QPS Algorithm . 70
3.1.4 The QPI Algorithm . 71
3.1.5 The Colour Change Algorithm . 72
3.1.6 The Colour Permutation Algorithm . 75
3.1.7 The Selected Colour Change Algorithm . 76
3.1.8 Fingerprinting via Register Allocation . 79
3.1.9 QP Algorithms and Public-Key Cryptography . 79
3.1.10 Conclusion . 80

3.2 Code Re-Ordering Watermarks . 81
3.2.1 Basic Block Re-Ordering . 81
3.2.2 Equation Re-Ordering . 84
3.2.3 Function Re-Ordering . 85
3.2.4 Constant Pool Re-Ordering . 85
3.2.5 Conclusion . 87

3.3 Graph Watermarking . 87
3.3.1 Encoding Watermarks in Graphs . 87
3.3.2 Static Graph Watermarking . 92
3.3.3 Dynamic Graph Watermarking . 94
3.3.4 Attacks against graph watermarks . 96
3.3.5 Tamper-proofing by Constant Encoding . 97
3.3.6 Conclusion . 98

3.4 Code Replacement . 98
3.4.1 Spread Spectrum Watermarking . 99
3.4.2 Conclusion . 101

3.5 Abstract Interpretation . 101
3.6 Threads . 101
3.7 Execution Path . 101
3.8 Slicing Based . 101

4 Evaluation of Static Watermarking Algorithms 102
4.1 The Watermarkers . 102

4.1.1 Sandmark . 102
4.1.2 Allatori . 102
4.1.3 DashO . 102

4.2 The Watermark Algorithms . 103
4.3 The Obfuscation Algorithms . 103
4.4 The Jar files . 103
4.5 Results . 104

4.5.1 Watermarking . 104
4.5.2 Obfuscation . 104
4.5.3 Recognition . 105
4.5.4 Analysis . 105

4.6 Conclusion . 106

5 Current Progress and Thesis Plan 110
5.1 PhD Road Map . 110
5.2 Thesis Plan . 110
5.3 Program Slicing . 110
5.4 Finding Watermarks . 111

5

A Decompiled Program Listings 113

B Bytecode Analysis Tools 144

C Bytecode Generation/Manipulation Tools 145
C.1 Java → Java Bytecode Compilers . 146
C.2 Java Bytecode Assemblers . 147

C.2.1 Other language → Java Bytecode Compilers . 153
C.2.2 Bytecode Optimisers . 154
C.2.3 Bytecode Obfuscators . 155

D Java Class File Format 156

E Bytecode Instruction Set 163

F Stuff 165
F.1 Static Single Assignment Form . 165
F.2 Stack-based instructions . 167

F.2.1 Stack Height . 167
F.2.2 Local Variables . 167
F.2.3 Flattening the Stack . 168

F.3 JLS Inconsistancies . 169

6

List of Figures

1.1 Compilation and decompilation of Java Bytecode . 13

2.1 Decompilation Pattern - Integer variable assignment . 21
2.2 Decompilation Pattern - While Loop . 21
2.3 Decompilation Pattern - Integer Array . 22
2.4 Decompilation Pattern - Integer Increment . 22
2.5 Decompilation Pattern - If-then-else . 22
2.6 The Decompilers . 25
2.7 Java Exception Hierarchy. Unchecked exception classes are coloured grey. 29
2.8 Java bytecode for listing 2.6, page 29. 31
2.9 Java bytecode control flow graph for listing 2.6, page 29 with highlighted try-catch sections. 32
2.10 Type hierarchy for the type inference test program. Drawable is the lowest common

ancestor of Circle and Rectangle. 35
2.11 Control flow graph for the control flow program. 38
2.12 Control flow graph for the exceptions test program [116]. Solid edges indicate normal

control flow while dashed edges represent exception control flow. 41
2.13 Decompilation correctness classification . 48
2.14 Decompiler Test Results . 49

3.1 Simple Static Watermarking System . 61
3.2 Simple Dynamic Watermarking System . 62
3.3 A graph with 4 vertices and 2 colours . 63
3.4 Example graph with 5 vertices and 3 colours . 63
3.5 Example interference graph for listing 3.1 . 64
3.6 Example coloured interference graph for listing 3.1 . 64
3.7 Evolution of Register Allocation Based Software Watermarking. Oval shapes represent

new algorithms, while rectangular shapes represent evaluations. 66
3.8 Example interference graph . 68
3.9 Example interference graph with embedded watermark . 69
3.10 Coloured Triple . 70
3.11 Example interference graph with embedded watermark using the QPS algorithm 73
3.12 Example interference graph with embedded watermark using the QPI algorithm 73
3.13 Example interference graph with embedded watermark using the CC algorithm 74
3.14 Example interference graph with embedded watermark using the CP algorithm 76
3.15 Example interference graph with embedded watermark using the SCC algorithm 77
3.16 Linearised Control Flow Graphs for the Java Bubble Sort program, listing 3.3 83
3.17 Equation tree for equation 3.4 . 85
3.18 Conceptual Java class file diagram, showing constant pool before and after watermarking. 86
3.19 Enumerations of a directed graph with 4 indistinguishable vertices. 88
3.20 Planted Planar Cubic Tree . 88
3.21 Enhanced Planted Planar Cubic Tree, with leaf self-pointers (dotted) and an outer cycle

(dashed). 89
3.22 Enumerations of PPCTs with 1 to 4 leaves, showing the index below. 89
3.23 Radix-5 expansion of the watermark 365. The spine is black and edges representing radix-k

are dotted. 90

7

3.24 Permutation graph encoding the integer 9710 using algorithm 14 to generate the permu-
tation {3, 1, 0, 2, 4}. 91

3.25 Graph theoretic watermarking . 93
3.26 A possible graph encoding of the constant 0. 97

4.1 Watermark and Obfuscation success. Out of the 840 expected watermarked jars, only 671
were produced by the watermarkers (a), while only 588 of these were correctly recognised
(b). Out of the 26,169 expected attacked watermarked jars only 23,626 were produced (c). 104

4.2 The number of files in which watermarks were correctly embedded and recognised. Not all
the embedded watermarks were correctly recognised before transformation. This is due
to the fact that some watermarking algorithms require a minimum size class-file to store
the watermark. This led to some watermarks being embedding incorrectly or a subset of
the original watermark being embedded. The number of recognitions before the files were
attacked is much higher than after applying the ‘Combo 2’ combination of transformations.
In fact, all but 53 watermarks were destroyed. 108

5.1 PhD Road Map . 112

D.1 Conceptual diagram of a Java class file. Source: [?] . 157

F.1 Bytecode resulting from compilation of listing F.1, page 169. Left-hand-side compiled with
jikes (Java 1.4), right-hand-side compiled with javac 1.6. Blue sections indicate exception
table entries. 170

F.2 Control flow graph for javac 1.6 generated bytecode of listing F.1, page 169. 172
F.3 Control flow graph for jikes (Java 1.4) generated bytecode of listing F.1, page 169. 173

8

Listings

2.1 Jasmin code for sum method . 20
2.2 Java code for sum method . 23
2.3 Java code for sum method - nicer version . 24
2.4 Java Casting example . 27
2.5 What is the type of x? [160] . 28
2.6 Example of try-catch . 29
2.7 Example of checked exceptions . 30
2.8 Throwing an exception . 31
2.9 Multiple local variable types . 33
2.10 Fibo Test Program . 34
2.11 Casting Test Program . 35
2.12 Casting Test Program in Jasmin . 36
2.13 Inner class Test Program . 36
2.14 Type Inference Test Program . 37
2.15 Drawable interface for Type Inference Test Program . 37
2.16 Circle class for Type Inference Test Program . 37
2.17 Rectangle class for Type Inference Test Program . 37
2.18 Try Finally Test Program . 38
2.19 Try Finally Test Program javac - Jasmin Source . 39
2.20 Try Finally Test Program Jikes - Jasmin Source . 40
2.21 Control Flow Test Program . 41
2.22 Control Flow Test Program . 42
2.23 Exception Test Program (Jasmin) . 43
2.24 Jasmin source for the TypeInference test program . 45
2.25 Jasmin source for the Optimised (TypeInference) test program 46
2.26 Variable re-use test program . 47
3.1 ’Example Pseudocode’ . 64
3.2 ’Example Pseudo-Assembly code’ . 65
3.3 Bubble Sort in Java . 82
3.4 Hello World in Java . 87
3.5 Example Java Method - Sum . 92
3.6 Example Static Graph Watermark Method - Sum . 92
3.7 Example Static Graph Watermark Java Method - Sum . 93
3.8 Example Dynamic Graph Watermarked Java Method - Sum 94
3.9 CT watermark implementation. 95
3.10 Example Constant Encoding Java Method - Sum . 97
3.11 Watermarked using the instruction encoding from table 3.5 98
3.12 ’Example Pseudo-Assembly code’ . 100
3.13 ’Example Pseudo-Assembly code’ . 100
3.14 Call depth manipulation for spread-spectrum watermarking 101
A.1 Test Result: Dava - Exceptions test program . 113
A.2 Test Result: Dava - Casting test program . 113
A.3 Test Result: Dava - Args test program . 113
A.4 Test Result: Dava - ControlFlow test program . 114
A.9 Test Result: Dava - Extract 1 from connectfour test program 114

9

A.5 Test Result: Dava - Sable test program . 115
A.6 Test Result: Dava - Usa test program . 115
A.7 Test Result: Dava - TryFinally test program. Variable $r5 was originally $r4. 116
A.18 Test Result: Jad - Extract 1 from connectfour test program 116
A.8 Test Result: Dava -Optimised test program . 117
A.10 Test Result: Jad - Sable test program . 118
A.11 Test Result: Jad - ControlFlow test program . 118
A.12 Test Result: Jad - Casting test program . 119
A.13 Test Result: jad - Usa test program . 119
A.14 Test Result: Jad - Exceptions test program . 120
A.15 Test Result: Jad - Optimised test program . 121
A.16 Test Result: Jad - TryFinally test program . 121
A.17 Test Result: Jad - Args test program . 122
A.19 Test Result: Java Decompiler - Casting test program . 123
A.20 Test Result: Java Decompiler - InnerClass test program 123
A.26 Test Result: Java Decompiler - Extract 1 from connectfour test program 123
A.27 Test Result: Java Decompiler - Extract 2 from connectfour test program 123
A.35 Test Result: jdec - Extract 1 from connectfour test program 123
A.21 Test Result: Java Decompiler - Sable test program . 124
A.22 Test Result: Java Decompiler - ControlFlow test program 124
A.23 Test Result: Java Decompiler - Exceptions test program 125
A.24 Test Result: Java Decompiler - Optmised test program . 125
A.25 Test Result: Java Decompiler - Args test program . 125
A.28 Test Result: jdec - Casting test program . 126
A.29 Test Result: jdec - Usa test program . 127
A.36 Test Result: jdec - Extract 3 from connectfour test program 127
A.30 Test Result: jdec - Sable test program . 128
A.31 Test Result: jdec - ControlFlow test program . 129
A.32 Test Result: jdec - Exceptions test program . 130
A.33 Test Result: jdec - Optimised test program . 131
A.34 Test Result: jdec - Args test program . 132
A.37 Test Result: jdec - Extract 4 from connectfour test program 133
A.38 Test Result: JODE - TryFinally test program . 133
A.50 Test Result: jReversePro - Extract 1 from connectfour test program 133
A.51 Test Result: jReversePro - Extract 2 from connectfour test program 133
A.53 Test Result: Mocha - Extract 1 from connectfour test program 133
A.39 Test Result: JODE - ControlFlow test program . 134
A.40 Test Result: JODE - Exceptions test program . 134
A.41 Test Result: JODE - Optmised test program . 134
A.42 Test Result: JODE - connectfour test program . 135
A.43 Test Result: jReversePro - Fibo test program . 135
A.54 Test Result: Mocha - Extract 2 from connectfour test program 135
A.44 Test Result: jReversePro - Casting test program . 136
A.45 Test Result: jReversePro - Usa test program . 136
A.46 Test Result: jReversePro - TryFinally test program . 137
A.47 Test Result: jReversePro - Exceptions test program . 137
A.48 Test Result: jReversePro - Optmised test program . 138
A.49 Test Result: jReversePro - Args test program . 139
A.52 Test Result: Mocha - Args test program . 139
A.55 Test Result: Mocha - Extract 3 from connectfour test program 140
A.56 Test Result: SourceAgain - Casting test program . 140
A.57 Test Result: SourceAgain - Usa test program . 140
A.63 Test Result: SourceAgain - Extract 1 from connectfour test program 140
A.64 Test Result: SourceAgain - Extract 2 from connectfour test program 140
A.58 Test Result: SourceAgain - Sable test program . 141
A.59 Test Result: SourceAgain - TryFinally test program . 141

10

A.60 Test Result: SourceAgain - ControlFlow test program . 142
A.61 Test Result: SourceAgain - Exceptions test program . 142
A.62 Test Result: SourceAgain - Optmised test program . 143
C.1 Hello World in ASM source (derived from ASM examples package). 148
C.2 Hello World in BCEL source. 149
C.3 Hello World in Jasmin source. Comments begin with semi-colon (;). 150
C.4 Hello World in Cojen source. 151
C.5 Hello World in Jamaica source. 152
C.6 Hello World in Jamaica source using a macro. 152
C.7 Randomise Class. 155
D.1 Hello World Java Program . 158
D.2 Hex Dump of Hello World Java Program . 158
D.3 Mnemonic Byte Code Dump of Hello World Java Program 159
D.4 Simple use of Java if statement . 159
D.5 Mnemonic Byte Code Dump of Java Simple If program 160
D.6 Simple use of Java loop statements . 160
D.7 Mnemonic Byte Code Dump of Simple use of Java loop statements 161
D.8 Mnemonic Byte Code Dump of c2j Java translation of ?? - short C program with goto

statements . 162
F.1 Legal Java source which produces illegal bytecode [160] 169
F.2 Jad decompiler output for listing F.1, page 169 (compiled with javac 1.6) 171

11

Chapter 1

Introduction

Programmers write applications in a high-level language like Java or C which is understandable to them
but which cannot be executed by the computer. The textual form of a computer program, known as
source code, is converted into a form that the computer can directly execute. Java source code is compiled
into an intermediate language known as Java bytecode which is not directly executed by the CPU but
executed by a virtual machine. Programmers need not understand Java byte code but doing so can help
debug, improve performance and memory usage [72].

Compilation is the act of transforming a high-level language, into a low-level language such as machine
code or bytecode. Decompilation is the reverse. It is the act of transforming a low-level language into a
high-level language [19].

Decompilation can be used to assist software theft, also known as software piracy - the act of copying
a legitimate application and illegally distributing that software, either free or for profit. There are
many methods to protect software including legal methods such as copyright laws, patents and license
agreements but these do not always dissaude people from stealing software, especially in emerging markets
where the price of software is high and incomes are low. Ethical arguments, such as fair compensation
for producers, by software manufacturers, law enforcement agencies and industry lobbyists also do little
to counter software piracy. The global revenue loss due to software piracy was estimated to be more
than $50 billion1 in 2008 [17]. We therefore require technical measures to reduce software piracy, such
as software watermarking and/or obfuscation.

Software watermarking involves embedding a unique identifier within a piece of software, to discour-
age software theft. Watermarking does not prevent theft but instead discourages software thieves by
providing a means to identify the owner of a piece of software and/or the origin of the stolen software.
The hidden watermark can be extracted, at a later date, by the use of a recogniser to prove ownership
of stolen software.

1This figure is said to be inflated, by some, as the report’s conclusions are based on mathematical models not empirical
data revealing specific instances of piracy [137, 111]

12

Figure 1.1: Compilation and decompilation of Java Bytecode

1.1 Background

1.1.1 Java and the Java Virtual Machine

The Java Virtual Machine is essentially a simple stack based machine which can be separated into five
parts: the heap, program counter registers, method area, Java stacks and native method stacks [168] .
The Java Virtual Machine Specification [108] defines the required behaviour of a Java virtual machine
but does not specify any implementation details. Therefore the implementation of the Java Virtual
Machine Specification can be designed different ways for different platforms as long as it adheres to the
specification. A Java Virtual Machine executes Java bytecode in class files conforming to the class file
specification which is part of the Java Virtual Machine Specification [108] and updated for Java 1.6 in
JSR202 [16].

An advantage of the virtual machine architecture is portability - any machine that implements the
Java Virtual Machine Specification [108] is able to execute Java bytecode hence the slogan “Write once,
run anywhere” [97]. Java bytecode is not strictly linked to the Java language and there are many
compilers, and other tools, available which produce Java bytecode [? 68] such as the Jikes compiler,
Eclipse Java Development Tools or Jasmin bytecode assembler. Another advantage of the Java Virtual
Machine is the runtime type-safefy of programs. These two main advantages are properties of the Java
Virtual Machine not the Java language [68] which, combined, provides an attractive platform for other
languages.

Java bytecode can be generated in three ways:

1. from a Java source program using a Java compiler (such as Sun’s javac),

2. using a language other than Java to Java bytecode compiler (such as JGNAT [3] - an open-source
Ada to Java bytecode compiler) or

3. by writing a class file by hand.

The tedious task of hand-writing a Java class file can be made easier by using a Java assembler, such
as Jasmin [113], which accepts a human readable form of Java bytecode instructions and generates a
Java class file. We use Jasmin source in this paper for examples programs which are written manually,
or for examples which require inspection of the bytecode.

Java bytecode can also be manipulated by tools such as obfuscators and optimisers which perform
semantics preserving transformations on bytecode contained within a Java class file. Figure ?? shows
the Java bytecode cycle from generation to decompilation to Java source.

Java bytecode retains type information about fields, method returns and parameters but it does not,
for example, contain type information for local variables. The type information in the Java class file ren-
ders the task of decompilation of bytecode easier than decompilation of machine code [54]. Decompiling
Java bytecode, thus, requires analysis of most local variable types, flattening of stack-based instructions
and structuring of loops and conditionals. The task of bytecode decompilation, however, is much harder
than compilation. We show that often decompilers cannot fully perform their intended function [23, 74].

13

1.1.2 Decompilation

The problems to be solved by a general decompiler can be divided into different categories [54]:

1. separation of code from data

2. separation of pointers from constants

3. separation of original and offset pointers

4. declaration of data

5. recovery of parameters and returns

6. analysis of indirect jumps and calls

7. type analysis

8. merging of instructions

9. structure of loops and conditionals

The decompilation of machine code requires all 9 of these tasks to be solved whereas the decompilation
of Java bytecode requires only 3 of these tasks to be solved due to the amount of information stored in a
class file. A fourth problem caused by exceptions and synchronisation stems from their implementation
using arbitrary control flow and possibly overlapping exception handlers.

Decompiling Java bytecode requires analysis of most local variable types, merging of stack-based
instructions and structuring of loops and conditionals. Java bytecode retains type information for fields,
method returns and parameters but it does not contain type information for local variables. This
information encoded in the class file makes the task of type inference easier compared to decompilation
of machine code.

Decompilation has many applications including legitimate uses, such as the recovery of lost source
code for a crucial application [56] and non-legitimate uses such as reverse-engineering a proprietary
application. Consider the case in which a company has lost the source code for their application and
to continue development on the software they require recovery of source code from Java class files.
The company must decompile the Java class files and attempt to recover Java source equivalent to the
originally lost source. In this case, in comparison to an illegitimate use, it is likely that the company
knows more about how the Java class files were generated. Knowledge of how class files are generated
provides information useful in the recovery of the original source as a decompiler can be optimised for
the compiler used.

The purpose of a decompilation task indicates the level of decompilation to be achieved. Recompi-
lation of a decompiled program does not require that the source be easy to read or tidy. It does not
even require that type inference is performed as long as the program is correctly type-casted. Many
of the existing Java decompilers do not perform type inference [55] and, while much research has gone
into creating efficient type inference algorithms [63, 13], code with correct type-casts is semantically
equivalent.

On the other hand, if the purpose of decompilation is to produce maintainable, extensible code then
readable code with full typing is desirable. Such a decompiler should produce code that is similar to a
human programmer so that future work on the code can be undertaken easily. Some decompilers produce
output which is more readable than others, while optimisations have been been to some decompilers to
produce more readable code [128, 127].

If the purpose of decompilation is to simply understand a program, the syntactical correctness of
a complete decompiled program may not be a high-priority. Correct portions of an incorrect program
could help in the understanding of a program, in contrast to the case of source recovery where correct
source is needed. Software theives would be able to analyse partial Java programs [42] allowing them to
remove, for example, product key validation code.

There is a fair amount of literature on decompilation but not a lot covering specifically Java decom-
pilation. A lot of interesting research in this subject and generally Java optimisation is performed by

14

the Sable Research Group2 at McGill University. They have created Soot [164] - a Java optimisation
framework which includes a Java decompiler called Dava [116]. Several commercial decompilers exists
(e.g. Class Cracker) thought most have been unmaintained for several years.

The design of a decompiler is made easier if it only has to decompile code produced by Sun’s javac
Java compiler as it mostly means inverting a known compilation strategy [116]. javac is open-source so
developers can see the implementation of the compiler and relatively easily invert it; of course there are
still some problems to overcome. Many of the existing decompilers expect classfiles generated by javac.

The Java bytecode Verifier and, from version 1.6 onwards, the Java bytecode Checker check the
validilty of Java bytecode as a matter of program security. This bytecode validation phase ensures that
programs are ’well-behaved’. The verification process does not require that a program is compiled with
javac and it is possible to create class files which no Java compiler can produce yet they pass the Verifier
with flying colours [100]. This has caused security concerns since the early days of Java.

The decompilation of arbitrary, verifiable bytecode is more difficult than that of decompiling javac
produced bytecode due the ability to create or change class files in ways that are able to pass verification
but do not contain expected bytecode. The decompilation of such arbitary bytecode causes many Java
decompilers to fail which prompted the development of Dava [116] - a decompiler designed to deal with
arbitrary bytecode.

As an example javac produces bytecode which leaves the stack height the same before and after any
statement. This is not a requirement of the Verifier and any classfiles which do not follow this break
certain decompilers [54]. Some of the early decompilers are fooled by the insertion of a pop opcode at
the end of a method as this is unexpected even though it passes the Java Verifier.

One source of the problem of arbitrary bytecode is that the class file format is entirely independent
of the Java language and bytecode is more powerful than the Java language [100]. For example in the
Java Virtual Machine specification [108] in relation to exception handling it lists the conditions with
which javac produces exception handling bytecode but it notes that there are no restrictions enforced
by the Verifier to check these conditions and suggests this does not pose a threat to the integrity of the
Java Virtual Machine. Therefore unexpected exception handling code can be written and still pass the
verification process.

Tools such as bytecode optimisers and code obfuscation change bytecode which can result in verificable
bytecode which doesn’t easily translate to syntactically correct Java source code.

1.1.3 Software Watermarking

Software watermarking involves embedding a unique identifier within a piece of software, to discourage
software theft. Watermarking does not prevent theft but instead discourages software thieves by provid-
ing a means to identify the owner of a piece of software and/or the origin of the stolen software [123].
The hidden watermark can be extracted, at a later date, by the use of a recogniser to prove ownership
of stolen software. It is also possible to embed a unique customer identifier in each copy of the software
distributed which allows the software company to identify the individual that pirated the software. It is
necessary that the watermark is hidden so that it cannot be detected and removed. It is also necessary,
in most cases, that the watermark is robust - that is, resilient to semantics preserving transformations
(such as optimisations or obfuscations). However, in some cases it is desirable that a watermark is fragile
in the sense that if semantics preserving transformations are performed on the software the watermark
becomes invalid. This is useful in the context of software licensing where any changes to a program could
disable it.

Watermarking techniques are used extensively in the entertainment industry to identify multimedia
files such as audio and video files, and the concept has extended into the software industry. Watermarking
does not aim to make a program hard to steal or indecipherable like obfuscation but it discourages theft
as thieves know that they could be identified.

Most literature discusses techniques and problems of automatically watermarking software and there
is only a small amount of literature which compares automatic watermarking with manual watermarking
[131]. A manual watermark is inserted by the programmer of the application, rather than a using a
third-party automatic tool. Some semi-automatic watermarking systems also exist (e.g. The Collberg-
Thomborson algorithm implemented in Sandmark[26]) - where a programmer inserts markers into a

2http://www.sable.mcgill.ca/

15

http://www.sable.mcgill.ca/

program during development and the finished software is then augmented by a software watermarking
tool.

Watermarks can be classified as either visible, where the recongiser is public knowledge or invisible
where the recongniser, or some component (such as an encryption key), is not public knowledge. Visible
watermarks can act as a deterrent but also show an adversary the location of a watermark making the
task of removing the watermark easier.

Difficulties of Software Watermarking

Software watermarks present several implementation problems and many of the current watermarking
algorithms are vulnerable to attack. Watermarked software must meet the following conditions:

program size must not be increased significantly. program efficiency must not be decreased signifi-
cantly. robust watermarks must be resilient to semantics preserving transformations (fragile watermarks,
by definition, should not be). watermarks must be sufficiently well hidden, to avoid removal. watermarks
must be easy for the software owner to extract. Perhaps the most difficult problem to solve is keeping
the watermark hidden from attackers while, at the same time, allowing the software owner to efficiently
extract the watermark when needed. If the watermark is too easy to extract then an attacker would be
able to extract the watermark too. If a watermark is too well hidden then the software owner may not
be able to find the watermark, in order to extract it. Some watermark tools (such as Sandmark [26])
use markers to designate the position of the stored watermark - this is problematic as it poses a risk of
exposing the watermark to an adversary.

Watermarks should be resilient to semantics preserving transformations and ideally it should be
possible to recognise a watermark from a partial program. Semantics preserving transformations, by
definition, result in programs which are syntactically different from the original, but whose behaviour
is the same. The attacker can attempt, by performing such transformations, to produce a semanti-
cally equivalent program with the watermark removed. Redundancy and recognition with a probability
threshold may help with these problems [117].

The watermark code must be locally indistinguishable from the rest of the program so that it is
hidden from adversaries [167]. For example, imagine a watermark which consists of a dummy method
with 100 variables - this kind of method will probably stand out in a simple analysis of the software
(such as using software metrics techniques [73, 90]). It could be difficult to programatically generate code
which is indecipherable from the human-generated program code but statisical analysis of the original
program could help in generating suitable watermarks [117].

Ideally, software watermarks should be resilient to decompilation-recompilation attacks, as decompi-
lation of Java is possible (though not perfect [74]).

Software watermarks must be efficient in several ways:

• cost of embedding time.

• cost of runtime.

• cost of recognition time.

The cost of embedding a software watermark can be divided into two areas: developer time and
embedding cost. The former simply quantifies the time that a developer spends embedding a watermark,
while the latter quantifies the execution time of a software watermarking tool. Embedding costs are not
a significant problem except in certain cases such as live multimedia streaming.

Developer time is important in use of software watermarks as the developer should not have to spend
a large amount of time preparing a software watermark. The complexity of a software watermark is
proportional to the resilience of the watermark - that is, the greater amount of time a developer spends
embedding a watermark the harder it may be for an adversary to crack. For example, a developer could
spend days introducing a subtle semantic property into the program which is unique to the software and
very hard to discover. Consider a program which when a certain key combination is entered one pixel
in the program’s interface changes to a certain colour - this would be hard for an attacker to detect but
may take a developer time to implement.

Now consider an automatic watermarker which programatically generates dummy code and injects
this into random places within the program - such code will be easier to discover than code that was
generated by a developer and carefully inserted.

16

In the middle of the scale is a semi-automatic watermark which involves a developer preparing a
program before a watermarking tool embeds the watermark. The preparations could include inserting
markers where watermark code should be inserted, or creating dummy methods which watermarks could
use. Monden et al. [121] describe a watermarking algorithm which requires the production of a dummy
method in a program for the watermark to be stored. A programmer must create this dummy method
manually and then execute watermarking software to embed the watermark.

The cost of runtime depends on the effect that the transformations applied by the watermark have
had on the size and execution time. For example, Hattanda et al. [78] found that the size of a program,
watermarked with Davidson/Myhrvold [44] algorithm, increased by up to 24% and the performance
decreased by up to 14%.

Dummy methods, which are not executed, will have minimal effect on runtime cost but dynamic
watermarks may have a high runtime cost as the watermark is built during program execution. The
fidelity of watermark, ‘the extent to which embedding the watermark detoriates the original content’
[131], should also be taken into account for the effects caused by watermarking, for example embedding
a watermark may introduce unintentional errors.

The ideal recognition time of a watermark will most likely be quick but in some cases it may be
important to artificially slow watermark recognition time to prevent oracle attacks [131]. Such attacks
rely on the repetitive execution of a recongiser thus fast recognition time helps an adversary.

Types of Watermark

Nagra et al. define four types of watermark [131]:

Authorship Mark identifying a software author, or authors. These watermarks are generally visible
and robust.

Fingerprinting Mark identifying the channel of distribution, i.e. the person who leaked the software.
The watermarks are generally invisible, robust and consist of a unique identifier such as a customer
reference number.

Validation Mark to verify that software is genuine and unchanged, for example like digitally signed
Java Applets. These watermarks must be visible to the end-user to allow validation and fragile to
ensure the software is not tampered with.

Licensing Mark used to authenticate software against a license key. The key should become ineffective
if the watermark is damaged therefore licensing marks should be fragile.

Watermarking Techniques

Software watermarks can be broadly divided into two categories: static and dynamic [30]. The former
embeds the watermark in the data and/or code of the program, while the latter embeds the watermark
in a data structure built at runtime.

Static watermarks are embedded in the code and/or data of a computer program, a trivial example
would be embedding a copyright notice in a string. Java class-files could contain software watermarks
within their method bodies or their constant pool. The problem with storing a watermark as a string in a
computer program is that unused variables could be easily removed with a simple dead-code analysis, and
method or variable names are either lost during compilation or obfuscation. Other static watermarking
techniques may involve transformations such as re-arranging or replacing instructions or basic blocks.

Some of the first static software watermarking techniques [44?] were describe in patents before
academic researchers became interested in the area.

Dynamic watermarking techniques store a watermark in a program’s execution state, rather than in
the program code itself [29], therefore they should be resilient to semantics preserving transformations.

‘Easter eggs’ [30] are a type of dynamic watermark and, while they provide little protection, they
demonstrate the idea of dynamic watermarking. An easter egg is hidden, by a programmer, within a
program which usually performs some immediately perceptible action, such as displaying a message or
exposing a hidden game. Easter eggs are usually easy to find and there are websites [165] dedicated to
sharing easter eggs, in software, video games, music, TV shows and movies. Because easter eggs are
usually easy to find and shared easily once found they are impractical to use for identifying software.

17

Once an easter egg has been found standard program analysis and transformation techniques such as
slicing [169] can be used to remove the watermark.

Program Transformation Attacks

Program transformation attacks on watermarked software can be divided into three categories:

Additive An additive attack involves inserting another watermark into an already watermarked appli-
cation, thus over-writing the original watermark. This attack will usually work if a watermark of
the same type is embedded but not necessarily if a different type of watermark is embedded [125].

Subtractive A subtractive attack involves removing the section, or sections, of code where the water-
mark is stored while leaving behind a working program. This could be achieved by dead code
elmination, statistical analysis or program slicing.

Distortive Distortive attacks involve applying semantics preserving transformations to a program, such
as obfuscations or optimisations thus removing any watermarks which rely on program syntax. For
example, renaming variables, loop transformations, function inlining, etc.

Both static and dynamic watermarks can be susceptible to program transformation attacks. Myles et
al. [125] conducted an evaluation of dynamic and static versions of the Arboit algorithm by watermarking
and obfuscating test files. They found the dynamic version to be only minimally stronger than the static
version, and both versions could be defeated by distortive attacks.

1.2 Overview Of This Report

We have introduced Java, decompilation and software watermarking which we evaluate in further chap-
ters. Chapter 2 contains an evaluation of current Java bytecode decompilers. Chapter 4 presents a
survey of static software watermarking techniques and an evaluation of their effectiveness for software
protection. Finally, we present details for further work and a timetable for completion in chapter 5.

18

Chapter 2

An Evaluation of Current Java
Bytecode Decompilers

The decompilation of Java bytecode involves transforming the low-level, stack based bytecode instructions
into high-level Java source. There are several main problems [116, 54] to solve in the decompilation of
Java bytecode:

• local variable typing

• merging stack-based instructions into expressions

• arbitrary control flow

• exceptions and synchronisation

Decompiling Java bytecode is easy when compared to decompiling machine code as there are far fewer
problems to overcome due to the amount of information contained within a class file. Java bytecode
decompilers have the following advantages [54] over machine code decompilers:

• Data is already separated from code as all the data is separately stored a class file’s constant pool.

• Separating pointers (references in Java) from constants is easy (e.g. some opcodes such as aload
work with references whereas iconst works with constant integers).

• Method parameter, method return and field types are stored in the class file.

• There is no need to decode global data since everything is stored within class files.

In this chapter we present an evaluation of existing commercial, free and open-source decompilers and
attempt to measure their effectiveness using a series of test programs.

We base this chapter on a survey performed in 2003 [55] which tested 9 decompilers. Some of the
originally tested decompilers have been updated, some are now unavailable and there are also some new
decompilers. We perform the original tests with some new decompilers and re-test other decompilers with
the latest version of Java class files. We also add some of our own tests which add some decompilation
problem areas which were not included in the original survey.

This chapter is organised as follows: In Section 2.4.2, the method of decompiler evaluation is described.
In Section 2.4, we present the results of our evaluation and in Section 2.6, we present our conclusions.

2.1 Java Decompilation Example

In this section, we present a step by step decompilation of the Jasmin code in listing 2.1 using a stack
evaluation method and taking advantage of Java to Java bytecode patterns.

19

Listing 2.1: Jasmin code for sum method

.method public static sum([I)V
.limit stack 3
.limit locals 3

a:
iconst_0
istore_1
iconst_0
istore_2

b:
iload_2
aload_0
arraylength
if_icmpge c
iload_1
aload_0
iload_2
iaload
iadd
istore_1
iinc 2 1
goto b

c:
iload_1
ifge d
getstatic java.lang.System.out Ljava/io/PrintStream;
ldc "total is less than zero :("
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
goto e

d:
getstatic java.lang.System.out Ljava/io/PrintStream;
new java/lang/StringBuilder
dup
invokespecial java/lang/StringBuilder/<init >()V
ldc "total is "
invokevirtual java/lang/StringBuilder/append(Ljava/lang/String ;)Ljava/lang/StringBuilder;
iload_1
invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder;
invokevirtual java/lang/StringBuilder/toString () Ljava/lang/String;
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

e:
return

.end method

Firstly, we can see that the method signature, public static sum([I)V, is similar to Java source: it
is public, static, the name of the method is sum and the parameters are shown in parenthesis. However,
the syntax for parameters is not the same as Java, and the method return type is at the end of the
signature.

In Java bytecode the I denotes an integer type and the square bracket preceding it declares a one
dimensional array; notice also, that the parameter does not have a name. The capital V denotes the
void return type. So we can deduce that the method signature in Java source will be (we’ve made up
the variable name):

public static void sum(int[] numbers)

The next two lines are instructions for the compiler - the maximum stack height and the number of
local variables that this method uses.

The first bytecode instruction, iconst_0, pushes a 0 onto the stack and the next bytecode instruction,
istore_1, pops an integer from the stack and stores it in local variable slot 1. Local variable slot
0 contains the parameter array (if this was an instance method local variable slot 0 would contain a
reference to the instance of the class i.e. the this variable in Java). This combination can be thought
of as assigning the value of 0 to an integer variable in Java; we must also declare the variable if it hasn’t
already been declared:

int total = 0;

Similarly, the next two bytecode instructions declare another integer variable and assign it the value
0:

int i = 0;

20

Figure 2.1: Decompilation Pattern - Integer variable assignment

The next three instructions can be considered together: iload_2, aload_0 and arraylength. When
we’re decompiling a program we can use the stack to build up expressions by pushing and popping the
variables and expressions, instead of their values. The first instruction pushes the integer in local variable
slot 2 onto the stack, the second pushes the parameter array onto the stack. So after these instructions
our expression stack is:

numbers
total

Next, the arraylength instruction pops an array from the stack and pushes it’s length. We pop the
numbers variable from our expression stack and push the
numbers.length expression:

numbers.length
total

The next instruction, if_icmpge, is an integer comparison jump instruction; this instruction pops two
integers a, b from the stack and jumps to the given label if a ≥ b. This is not, however, to be decompiled
as an if-expression in the Java source; it is, in-fact, the condition in a loop. We know that this is a while

loop because the instruction before the target of the jump instruction is a goto instruction; this goto

instruction jumps backward, to before the conditional instruction, which indicates that it is a while loop
and not an if statement. A do-while loop condition would appear with the goto at the beginning. We
must use the inverse of the condition in our while loop because the bytecode condition transfers control
flow to the end of the loop if the condition is true; however, we want the loop to start at the beginning.
Our condition is therefore i < numbers.length.

Figure 2.2: Decompilation Pattern - While Loop

The next 3 instructions push the values of the 3 variables in our method onto the stack; we push the
variables onto our expression stack:

i
numbers

total

The next instruction, iaload, pops an integer i and an array reference arr from the stack; it then
pushes the value at index i in the array arr onto the stack. We push the expression numbers[i] onto our
expression stack:

numbers[i]
total

Next, the instruction iadd pops two integers from the stack and pushes their sum back onto the stack.
We therefore pop our two variables from our expression stack and push the expression total + numbers[i].

The following instruction, istore_1, pops an integer from the stack and stores it in local variable
slot 1. We pop an expression from our expression stack and assign it to our variable total.

21

Figure 2.3: Decompilation Pattern - Integer Array

total = total + numbers[i];

The last instruction within the loop is an integer increment instruction iinc 2 1 - it increments the
integer value in local variable slot 2 by 1. This is equivalent to i++.

Figure 2.4: Decompilation Pattern - Integer Increment

So the entire while loop looks like this:

int i = 0;

while(i < numbers.length) {

total = total + numbers[i];

i++;

}

After the loop, the first instruction is iload_1 which pushes the value in local variable slot 1 onto
the stack; we push the variable onto our expression stack:

total

Next, we have another condition jump instruction, ifge d, which pops an integer value from the
stack and jumps to the specified label if the value is greater than or equal to zero. This time we are not
dealing with a while loop; we know this because the goto instruction preceding the jump target is a
forward jump, rather than a backward jump. Therefore, the code between the conditional jump and the
goto is the if’s then; the code from the goto until the goto’s jump target is the else. Again, we must
invert the conditional giving us the condition total < 0.

Figure 2.5: Decompilation Pattern - If-then-else

The first instruction in the body of the then clause is getstatic which pushes a reference to the
specified static field onto the stack - in this case the field
java.lang.System.out. The next instruction, ldc, pushes a constant onto the stack. Our expression
stack therefore looks like this:

“total is less than zero :(”
java.lang.System.out

The next instruction invokevirtual invokes the specified instance method, by first popping the cor-
rect number of arguments from the stack and lastly popping the object reference, on which the instance
method acts, from the stack. The method specified is java/io/PrintStream/println(Ljava/lang/String;)V

22

- that is, in Java, the void println(String s) in the
java.io.PrintStream class. The object reference java.lang.System.out, on the bottom of the stack,
is an instance of java.io.PrintStream. We therefore pop the string from the stack, followed by the
object reference and build our method call for Java:

java.lang.System.out.println("total is less than zero :(");

The else clause is similar to the then clause but we build up a longer string using a java.lang.StringBuilder
instance. The first instruction, again, pushes
java.lang.System.out onto the stack. The next instruction is new which creates an instance of the
specified class and pushes a reference to the instance onto the stack. This is followed by dup which
duplicates the item at the top of the stack, giving us an expression stack like this:

new java.lang.StringBuilder()
new java.lang.StringBuilder()

java.lang.System.out

The invokespecial instruction is then used to call the java.lang.StringBuilder’s constructor;
it pops the object reference from the top of the stack. The next instruction ldc pushes the constant
total is onto the stack:

“total is”
new java.lang.StringBuilder()

java.lang.System.out

The invokevirtual instruction then pops the string from the stack, followed by the java.lang.StringBuilder
instance and invokes the
public StringBuilder java.lang.StringBuilder.append(String s)

method; it pushes the result back onto the stack:

new java.lang.StringBuilder().append(“total is”)
java.lang.System.out

Then iload_1 is used to push the integer value in local variable slot 1 onto the stack. In our case, we
push the variable total onto the stack and then use invokevirtual to call the append method again:

new java.lang.StringBuilder().append(“total is”).append(total)
java.lang.System.out

Finally, we invoke the
public String java.lang.StringBuilder.toString() method and invoke the
public void java.io.PrintStream.println(String s) method to print out the result. We end up
with an empty stack and the following code:

java.lang.System.out(new java.lang.StringBuilder().append("total is").append(total).toString());

Putting all this together gives us the Java code in listing 2.2. We can tidy the code up slightly
by removing java.lang., converting the while loop to a for loop and turning the StringBuilder into
standard string concatenation to obtain listing 2.3.

Listing 2.2: Java code for sum method

public static void sum(int[] numbers) {
int total = 0;

int i = 0;
while(i < numbers.length) {

total = total + numbers[i];
i++;

}

if(total < 0) {
java.lang.System.out.println ("total is less than zero :(");

}else{
java.lang.System.out(new java.lang.StringBuilder ().append (" total is").append(total).toString

());
}

}

23

Listing 2.3: Java code for sum method - nicer version

public static void sum(int[] numbers) {
int total = 0;

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println ("total is less than zero :(");

}else{
System.out.println ("total is " + total);

}
}

24

2.2 The Decompilers

The currently available decompilers are summarised in figure 2.6 and explained further in this section.

decompiler type status 2003 version current version last update

Mocha free obsolete 0.1b 0.1b 1996

SourceTec commercial obsolete 1.1 1.1 1997

SourceAgain commercial obsolete 1.10j 1.1 2004

Jad free unmaintained 1.5.8e 1.5.8e 2001

JODE open-source unmaintained unknown 1.1.2-pre1 2004

ClassCracker3 commercial obsolete 3.01 3.02 2005

jReversePro open-source unmaintained 1.4.1 1.4.2 2005

jdec open-source current N/A 2.0 2008

Dava open-source current 2.0.1 2.4.0 2010

Java Decompiler free current N/A 0.3.2 2010

Figure 2.6: The Decompilers

2.2.1 Mocha

Mocha [1], released as a beta version in 1996, was one of the first decompilers available for Java along
with a companion obfuscator named Crema. Mocha can only decompile earlier versions of Java as it is an
old program. Mocha is obsolete but is still available on several websites as the original license permitted
its free distribution. The product was discontinued and never made it out of beta.

2.2.2 SourceTec (Jasmine)

SourceTec [2], also known as Jasmine, is another unmaintained old compiler which is a patch to Mocha.
The installation process involves providing Mocha’s class files which are then patched by SourceTec
(Jasmine).

2.2.3 SourceAgain

SourceAgain [156] was a commercial decompiler from Ahpah Software, Inc. It is no longer sold or
supported though they keep a web based version of their decompiler available on their website which
can only decompile single class files. The original survey [55] used the Pro version which is no longer
available.

2.2.4 ClassCracker3

ClassCracker3 [147] is another commercial decompiler which seems not to have been updated for at least
four years. An evaluation version of the program is available at the Mayon Software Research’s website
which states that it will decompile the first 5 methods of a Java class file.

2.2.5 Jad

Jad [96] is a popular decompiler that is free for non-commercial use but is no longer maintained1. It is a
closed source program written in C. The last update for Linux and Windows version for Jad was in 2001,
while a small update added an OS X version in 2006. Jad is used as the back-end by many decompiler
GUIs including an Eclipse IDE plug-in named JadClipse [69].

2.2.6 JODE

JODE [82] is an open-source decompiler that also includes a bytecode optimiser. The latest version 1.1.2-
pre1 was released February 24, 2004. JODE performed best in the original survey [55] by decompiling
six out of ten programs correctly.

1The original website is no longer active as of 25/02/2009 but Jad can still be obtained from http://www.varaneckas.

com/jad

25

http://www.varaneckas.com/jad
http://www.varaneckas.com/jad

2.2.7 jReversePro

jReversePro [99] is an open-source disassembler and decompiler project which is currently at version
1.4.2 though hasn’t been updated for several years.

2.2.8 Dava

Dava [114, 128, 127, 115, 116] is a decompiler which is part of the Soot Java Optimisation Framework
[164] from the Sable Research Group2 at McGill University in Montreal, Quebec, Canada. Soot is under
constant development at the Sable Research Group and the latest release was version 2.4.0 on March
29th, 2010. The first version of our evaluation used version 2.3.0.

2.2.9 jdec

jdec [14] is an open-source decompiler written in Java which was last released at version 2.0 in May,
2008. jdec is aimed at the decompilation of bytecode generated by Sun’s javac compiler and therefore
will probably have problems decompiling the arbitrary code.

2.2.10 Java Decompiler

Java Decompiler [47] is a free Java decompiler aimed at decompiling Java 5 and above class files. It is
in its early stages, at only version 0.3.2, and has been in development for about a year. The first version
of our evaluation used version 0.2.7.

2.2.11 NMI Code Viewer

NMI Code Viewer was included in the original survey with results ‘startlingly similar’ to Jad [55]. We
do not include this (unmaintained) decompiler as, in actual fact, it is a front-end for Jad [96].

2.2.12 jAscii

jAscii was included in the original survey, with poor results [55], but it is now obsolete and unavailable
for our evaluation.

2http://www.sable.mcgill.ca/

26

http://www.sable.mcgill.ca/

2.3 Problems with Java Decompilation

2.3.1 Casting

The program in listing 2.4 shows an example in which some decompilers omit the int typecast [55].

Listing 2.4: Java Casting example

public class Type {

public static void main(String [] args) {
char c = ’a’;

System.out.println ("ascii code for " + c + " is " + (int)c);
}

}

2.3.2 Inner Classes

The implementation of inner classes in Java is handled by the compiler - the Java Virtual Machine
has no concept of inner classes. The Java compiler converts the inner classes in a Java source file into
separate class files therefore a decompiler needs to be able to reconstruct the original class file from
several separate class files.

2.3.3 Type Inference

Type inference is a general problem in decompilation and is needed to recover type information lost
during the compilation process. Type analysis in Java bytecode decompilation is easier than that of
machine code decompilation due to the explicit typing of class fields and parameters in a Java class file.
It is easier to decompile Microsoft’s CIL bytecode as all types are explicit in the assembly files [54].

One of the first papers written on decompiling Java was a description of a decompiler named Krakatoa
[140] which focused on two problems: merging stack-based instructions into expressions and turning
arbitrary control flow into high-level Java constructs. The type-inference problem was dismissed as
trivial and solvable by well known techniques such as those used by the Java bytecode Verifier. The
Verifier subjects Java programs to a verification process in order to guarantee that the code will behave
normally [149].

In actual fact, the type inference problem is not the same as that performed by the Verifer and is
NP-Hard in the worst case [63]. The type analysis performed by the bytecode Verifier estimates the
types of local variables at each program point. This is used to ensure that each bytecode instruction is
operating on the correct type. For example if the Verifier encounters the iadd opcode it will ensure that
there are two integers at the top of the stack at that program point [106]. The type inference problem
for decompilation must give types to each variable that are valid for all uses of those variables.

If the type inference algorithm is optimised for the common-case rather than the worst case it is
still possible to perform type analysis for most real-world code as worst-case scenerios are unlikely
[13]. Bellamy et al. [13] provide a common-case optimised algorithm to perform type analysis which
outperforms Gagnon et al. [63]’s worst-case optimised algorithm. The algorithm relies on the assumption
that multiple inheritance, via interfaces, is rarely used in real-world Java programs which could prove a
problem if their assumption is false, or becomes false in the future.

Java’s restricted form of multiple inheritance, interfaces, leads to problems in finding a static type
in some cases where the code is valid but not generated directly from Java source [63]. This causes
problems for some decompilers which expect javac generated code. Using an static single assignment
form, as in [92], may change the type hierarchy when types conflict due to interfaces [116].

Listing 2.5, page 28 (from [160]) shows a program which some decompilers may decompile better than
others. If a decompiler does not perform type inference it will type x as Object and insert a typecast
in the invocation of method m2(Comparable) whereas others may correctly type x as Comparable. The
Java Virtual Machine Specification states that “the merged state contains a reference to an instance
of the first common superclass of the two types” in regards to the bytecode verifier - the first common

27

Listing 2.5: What is the type of x? [160]

//Java:
public void m1(Integer i, String s) {

Comparable x;

if(i != null)
x = i;

else
x = s;

m2(x);
}

public void m2(Comparable x) {
}

// bytecode:

public void m1(java.lang.Integer , java.lang.String);
0: aload_1
1: ifnull 9
4: aload_1
5: astore_3
6: goto 11
9: aload_2
10: astore_3
11: aload_0
12: aload_3
13: invokevirtual #12; // Method m2:(Ljava/lang/Comparable ;)V
16: return

public void m2(java.lang.Comparable);
0: return

superclass of Integer and String is Object. Therefore the verifier has to insert a run-time check to ensure
that both Integer and String are of type Comparable.

2.3.4 Control Flow

The goto statement is found in many programming languages which causes the execution of a program
to jump to another position, usually labelled with an identifier or a number depending on the language.
Java bytecode has two forms of goto: conditional and unconditional.

The Java language has restricted variants of goto in the form of the break and continue statements.
The break statement is either labelled or unlabelled. The unlabelled form can be used to terminate a
loop or to terminate case statements within a switch block. A labelled break statement terminates the
labelled statement, such as a for-loop, and is useful when using nested loops to break an outer loop.

Java switch statements are effectively multi-way goto statements where the execution flow is changed
based on an expression and possible values of the evaluated expression.

Due to the arbitrary control flow in Java bytecode and the more restricted high-level constructs in
Java it can be difficult to translate Java bytecode program into Java.

Ramshaw’s goto elmination technique can be used to replace gotos in a program, if and only if
the control flow graph is reducible, by replacing them with multi-level loop exit statements [146]. The
Krakatoa decompiler uses an extended version of Ramshaw’s goto elimination technique [140].

Java bytecode can contain non-reducible control flow which cannot be represented in Java source
requiring techniques such as described in [84] to be applied to transform irreducible control flow graphs
to reducible control flow graphs.

2.3.5 Exceptions

An exception, as described in the Java Language Specification [67], is an error signalled to a program by
the Java virtual machine when a program violates the semantic constraints of the language. When an
exception occurs control is transferred from the point where the exception occurred to a point specified
by a programmer (the catch clause); this is known as throwing and catching.

28

Figure 2.7: Java Exception Hierarchy. Unchecked exception classes are coloured grey.

Listing 2.6: Example of try-catch

try {
Integer.parseInt(s);

}catch(NumberFormatException e) {
System.out.println ("Enter an integer ");

}catch(Exception e) {
System.out.println ("some other error");

}

Errors in Java are organised in a hierarchy where the root object is the class Throwable, which has two
direct subclasses: Exception and Error. An object must be of type Throwable or one of it’s subclasses
to be thrown.

Exception and its subclasses, except RuntimeException, are errors which are commonly expected
to occur such as an IOException that the program may wish to recover from. RuntimeException and
subclasses are different in that they are used to handle events which are not generally expected to occur
but from which recovery is possible, such as a NumberFormatException due to wrong user input.

Error and its subclasses represent serious errors that a program cannot be expected to recover from
such as an OutOfMemoryError. They are distinct from Exception to allow programmers to catch errors
from which recovery is usually possible (Exception) and not require the inclusion of extra code to catch
errors from which recovery is usually impossible (Error). Figure 2.7, page 29 shows the Java exception
hierarchy.

Figure 2.6, page 29 shows a try-catch block with a call to the method Integer.parseInt that takes
a Unicode string and returns it’s int value or throws a NumberFormatException if the string does not
represent an integer. If an exception is thrown control passes to the catch block corresponding to the
class, or a super-class, of the exception thrown. The first catch clause, in order of appearance in the
source file with a matching type is executed - in this case if s is not an integer the message “Enter an
integer” will be displayed. The order of catch clauses is important because more than one catch clause
could handle the same exception. For example the clause catch(Exception e) {...} can also handle the
NumberFormatException as Exception is a superclass; subclass catch clauses must precede superclass
catch clauses.

Programmers can define their own exceptions by extending Throwable or any of its subclasses. The
Java Language Specification [66] recommends that all user defined exceptions extend Exception rather
than Throwable or RuntimeException because Exception and its subclasses are checked exceptions
whereas RuntimeException and its subclasses are unchecked.

A Java compiler ensures that a program contains handlers for checked exceptions during compilation
so for each method which could possibly throw a checked exception there must be a handler or the
method must declare that it itself throws the exception. If a method declares that it throws an exception
it must be caught or thrown in the invoking method, and so on.

Listing 2.7, page 30 shows three methods which return a FileReader object for the specified filename.
FileReader’s constructor throws a FileNotFoundException if the file specified was not found. This is a
checked exception therefore any invocation of the constructor requires an exception handler or that the

29

Listing 2.7: Example of checked exceptions

public class CheckedException {

public static void main(String [] args) {

try {
FileReader f = getFileReader1(args [0]);

}catch(FileNotFoundException e) {
// handle file not found exception

}

// returns null if file not found
FileReader g = getFileReader2(args [0]);

}

public static FileReader getFileReader1(String filename) throws FileNotFoundException {
return new FileReader(filename);

}

public static FileReader getFileReader2(String filename) {
try {

return new FileReader(filename);
}catch(FileNotFoundException e) {

return null;
}

}
/*
won ’t compile

public static FileReader getFileReader3(String filename) {
return new FileReader(filename);

}
*/

}

method containing the invocation declares that itself throws FileNotFoundException (or a superclass of
FileNotFoundException).

The first method declares that it throws a FileNotFoundException and therefore doesn’t need to
include a try-catch block. There is an exception handler at the first method’s invocation in the main
method.

The second method contains a try-catch block to handle the FileNotFoundException and the third
method will cause a compilation-time error as it does not handle or throw FileNotFoundException or
one of its superclasses.

Error and its subclasses are unchecked as they can occur at any point in a program and it is usually
impossible to recover from them. Runtime exceptions are unchecked because many operations could
throw a runtime exception and there isn’t enough information available to the compiler for it to determine
that a runtime exception cannot occur; it would also need too much exception handling code.

Programmers can throw exceptions themselves using the throw keyword. Listing 2.8, page 31 shows
a method yesOrNo which takes a string and returns true if the string contains ‘yes’ and false if the string
contains ‘no’ (including combinations of upper and lower case letters). If the string contains anything
else WrongInputException is thrown.

WrongInputException is a subclass of Exception which means that it is a checked exception therefore
when the yesOrNo method is invoked an exception handler must be used or the calling method must
declare that it throws a WrongInputException.

Java bytecode contains the necessary information to implement exceptions as specified by the Java
Language Specification [66]. Every method which contains a try-catch block in Java has an exception
table attribute attached which includes the ranges of bytes for which to catch exceptions, the byte at
which the exception handler starts and the type of exception. Figure 2.8 shows the bytecode, generated
by javac 1.6, for listing 2.6, page 29. It contains two entries in the exception table corresponding to the
two types of exception which are to be caught.

The first exception table entry lists an exception handler for the type NumberFormatException
between bytes 0 (inclusive) to 5 (exclusive) and the second entry lists an exception handler for the type
Exception between bytes 0 (inclusive) to 5 (exclusive). The Java Virtual Machine searches the exception

30

Listing 2.8: Throwing an exception

public class YesOrNo {

public static void main(String [] args) {
try {

System.out.println(yesOrNo(args [0]));
}catch(WrongInputException e) {

System.out.println(e);
}

}

public static boolean yesOrNo(String s) throws WrongInputException {
if(s.toLowerCase ().equals ("yes")) {

return true;
}else if(s.toLowerCase ().equals ("no")) {

return false;
}else{

throw new WrongInputException ("found " + s + ", expected yes or no.");
}

}

}

public class WrongInputException extends Exception {
WrongInputException () { super(); }

WrongInputException(String s) { super(s); }
}

Figure 2.8: Java bytecode for listing 2.6, page 29.

31

Figure 2.9: Java bytecode control flow graph for listing 2.6, page 29 with highlighted try-catch sections.

table starting at the top for the first matching entry for the type of exception that was thrown. So if
a NumberFormatException is thrown control is transferred to byte 8 and if an Exception or a subclass
excluding NumberFormatException is thrown control is transferred to byte 20.

If no matching exception handler is found the method completes abruptly, the method frame is
discarded and the exception is re-thrown in the invokers method frame and so on. If no matching
exception handler is found in the method execution chain the thread within which the exception was
thrown is terminated.

The first opcode of an exception handler is always an astore instruction which stores the Throwable
object which should be on the top of the stack into some local variable slot. The bytecode verifier must
check that a Throwable object will be on the stack at the beginning of an exception handler section.

An exception is thrown in bytecode using the athrow opcode which pops a Throwable object from
the stack and throws it.

Try-Finally

The finally clause of a try statement is guaranteed to execute even if the try block completes abruptly.
The subroutine for the finally clause is invoked at each exit point of a try block and its associated catch
block. The finally clause allows ‘clean-up’ code to be executed such as closing of database connections
or deleting temporary files, even if the try block completes abruptly. The finally clause is executed after
the try block completes normally and also if the try block exits with a return, break or throwing of an
exception.

Many of the old decompilers expect the use of subroutines for try-finally blocks but javac 1.4.2+ gen-
erates in-line code instead. An arbitrary decompiler, such as Dava, may also have problems decompiling
this simple program due to the way it analyses bytecode for decompilation.

Java bytecode subroutines, like subroutines in any other programming language, were designed to
allow code re-use for the implementation of finally clauses. For each exit point in a try clause the same
finally block must be executed which seems to suggest subroutines would be a good idea to implement
this. Java 1.4.2 and above repeat the finally clause bytecode at every try exit point rather than using
subroutines. This has the disadvantage that the code size is much bigger than when using subroutines
but data flow analysis is much simplified [60]. It also means that bytecode verification is simplified as
the verifier performs a form of data flow analysis on the bytecode. However, bytecode produced by
javac < 1.4.2 and other compilers could still contain subroutines.

The jsr opcode takes a two-byte operand indicating the offset from the jsr instruction to the sub-
routine. When the jsr opcode is executed the address of the next opcode is pushed onto the stack and
control is passed to the jsr specified by the operand.

The first instruction of a finally clause pops the stack and stores the return address (bytecode type
returnAddress) in a local variable.

The ret opcode takes one operand - the index of the local variable slot where the return address is
stored - execution then continues at the address loaded from this local variable slot.

32

Listing 2.9: Multiple local variable types

0: iconst_0 //push 0 onto stack
1: istore_0 //pop integer from stack , store in local 0
2: ldc "hello" //push String constant onto stack
3: astore_0 //pop object reference from stack , store in local 0
4: return

2.3.6 Variable Re-Use

It is possible for a local variable slot to take values of distinct types at different places in a method [63]
which is not possible in Java. For example listing 2.9 shows a simple valid method in which local variable
0 is used to store an integer then a String. At byte 1 local variable 0 contains a variable of type integer
but at byte 3 it contains an object reference type. This is perfectly valid bytecode and is akin to the
declaration of an integer followed by the declaration of a String in Java, but in the bytecode these two
distinct variables are using the same local variable slot.

Multiple types for local variables is valid bytecode as long as the lifetimes of the two uses of the local
variable does not overlap [92] i.e. a local variable only has the type (and value) of the last variable stored
in it.

This may be overcome by converting the bytecode to static single assignment form [6, 150, 41] where
all static assignments to a variable will have unique names. The possibility of multiple types for a single
local variable slot causes a problem for decompilation as each variable needs a single type which is valid
for all uses of that variable.

2.3.7 Arbitrary bytecode

Arbitrary bytecode may differ from compiler generated bytecode and may code that isn’t easily trans-
latable into Java source. In most cases this might not be a problem; for example, is there really a need
for decompiling to Java and program compiled from Ada. However, optimising a javac generated class
file turns the bytecode into a form of arbitrary code - that is, the optimisations transform the code in
ways which decompilers don’t expect.

33

Listing 2.10: Fibo Test Program

class Fibo {
private static int fib (int x) {

if (x > 1)
return (fib(x - 1) + fib(x - 2));

else return x;
}

public static void main(String args []) throws Exception {
int number = 0, value;

try {
number = Integer.parseInt(args [0]);

} catch (Exception e) {
System.out.println ("Input error");
System.exit (1);

}
value = fib(number);
System.out.println (" fibonacci (" + number + ") = " + value);

}

}

2.4 Empirical Evaluation

Our evaluation is based on a previous survey conducted in 2003 [55] which tested many of the
decompilers that are still available today. We attempt to decompile a set of test programs using each
decompiler and manually inspect the results to classify them as one of our ten categories of decompiler
effectiveness (section 2.4.2 describes our effectiveness measure). We use the test programs from the
original survey, where possible, and also extend the evaluation to include more problem areas such as
the correct decompilation of try-finally blocks and local variable slot re-use.

2.4.1 Test Programs

The test programs were taken from sources dealing with different problem areas of bytecode decompilation
and they provide interesting problems for decompilers.

The original survey showed that different decompilers are sometimes better in different areas but
no decompiler passed all the tests [55]. Of the decompilers tested in the original survey, JODE [82]
performed the best by correctly decompiling 6 out of the 9 test programs, with Dava [114] and Jad [96]
close behind.

In our tests we include two types of Java class file: those generated by javac and those generated by
other tools, which will be refered to as arbitrary bytecode class files. Java source files are compiled with
javac version 1.6.0 10. Arbitrary Java class files include two hand-written using the Jasmin assembler
version 2.1, one optimised using the Soot Framework [164] and one compiled by JGNAT [3].

Fibo

Fibo (Listing 2.10, page 34) is a fairly simple program to output the Fibonacci number of a given input
number. It should be a trivial test for a decompiler but contains many of the basic Java language
constructs. The program tests decompilation of basic Java language constructs such as if statements,
methods declarations & invocations and exception handling.

Casting

Casting [132] is a simple program to test if a decompiler can correctly detect the need to cast a char to
an int. The program (Listing 2.11, page 35) iterates through the first 128 ASCII characters and prints
out the ASCII code and the character. A cast from char to int is used to achieve this. The original
survey [55] showed that some decompilers were unable to detect the need for the cast and instead printed
the ASCII character instead of the ASCII code.

34

Listing 2.11: Casting Test Program

public class Casting {
public static void main(String args []){

for(char c=0; c < 128; c++) {
System.out.println (" ascii " + (int)c + " character "+ c);

}
}

}

Figure 2.10: Type hierarchy for the type inference test program. Drawable is the lowest common ancestor
of Circle and Rectangle.

Listing 2.12, page 36 shows the Jasmin source for the casting test program. The Java compiler (javac)
converts string concatenations into string buffer appends for efficiency. The line marked #1 is the point
at which the integer ASCII code is appended to the string buffer, and the line marked #2 is the point
at which the ASCII character is appended to the string buffer - notice that line #1 invokes the method
append(integer), while line #2 invokes the method append(character).

Usa

Usa [132] is a simple program (Listing 2.13, page 36) containing inner classes. The implementation of
inner classes in Java is handled by the compiler - the Java Virtual Machine has no concept of inner
classes. The Java compiler converts the inner classes in a Java source file into separate class files. For
example, the Usa test program’s main class is called Usa and it has an inner class called England - the
Java compiler generates a class named Usa$England for the inner class and the inner class contains a
private variable this$0 which is a reference to the outer class. Some decompilers in the original survey
[55] could not reconstruct the original Java source from the constituent class files.

Sable

Sable [116] is a program which tests a decompiler’s ability to perform type inference for local variables.
Variable d in the program (line 3, Listing 2.14, page 37) is difficult for a decompiler to type because it
depends on the value of the method parameter, i. If i > 10 then d becomes a Rectangle object, whereas
if i <= 10 d becomes a Circle object. Variable d should be typed Drawable as this is the lowest common
ancestor of Circle and Rectangle (see Figure 2.10, page 35). The original paper [116], written by the
developers of Dava, tested three different decompilers with the Sable test program, against Dava. They
showed that their decompiler could correctly type variable d whereas the other decompilers failed to do
so. Some decompilers do not perform type inference but insert a typecast where necessary in order to
produce a semantically equivalent program [116, 55].

TryFinally

TryFinally is a simple test program (Listing 2.18, page 38) to determine whether decompilers can de-
compile the implementation of try-finally blocks using in-line code instead of Java bytecode subroutines.

Listing 2.19, page 39 shows the Jasmin source for the TryFinally test program. Sections b and d
contain duplicate code which is the finally clause of the TryFinally block. Compare this with listing
2.20, page 40 which shows the Jasmin source for the TryFinally test program compiled with Jikes. This

35

Listing 2.12: Casting Test Program in Jasmin

; Produced by NeoJasminVisitor (tinapoc)
; http :// tinapoc.sourceforge.net
; The original JasminVisitor is part of the BCEL
; http :// jakarta.apache.org/bcel/
; Thu Jun 11 13:22:44 BST 2009

.bytecode 50.0

.source <Unknown >

.class public Casting

.super java/lang/Object

.method public <init >()V
.limit stack 1
.limit locals 1

aload_0
invokespecial java/lang/Object/<init >()V

return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 3
.limit locals 2
.var 0 is arg0 [Ljava/lang/String; from Label2 to Label0

Label2:
iconst_0
istore_1

Label1:
iload_1
sipush 128
if_icmpge Label0
getstatic java.lang.System.out Ljava/io/PrintStream;
new java/lang/StringBuilder
dup
invokespecial java/lang/StringBuilder/<init >()V
ldc "ascii "
invokevirtual java/lang/StringBuilder/append(Ljava/lang/String ;)Ljava/lang/StringBuilder;
iload_1
invokevirtual java/lang/StringBuilder/append(I)Ljava/lang/StringBuilder; ; #1
ldc " character "
invokevirtual java/lang/StringBuilder/append(Ljava/lang/String ;)Ljava/lang/StringBuilder;
iload_1
invokevirtual java/lang/StringBuilder/append(C)Ljava/lang/StringBuilder; ; #2
invokevirtual java/lang/StringBuilder/toString () Ljava/lang/String;
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
iload_1
iconst_1
iadd
i2c
istore_1
goto Label1

Label0:
return

.end method

Listing 2.13: Inner class Test Program

public class Usa {
public String name = "Detroit ";
public class England {

public String name = "London ";
public class Ireland {

public String name = "Dublin ";
public void print_names () {

System.out.println(name);
}

}
}

}

36

Listing 2.14: Type Inference Test Program

public class Sable {
public static void f(short i) { // 2

Circle c; Rectangle r; Drawable d; // 3
boolean is_fat;

if (i > 10) { // 6
r = new Rectangle(i, i); // 7
is_fat = r.isFat (); // 8
d = r; // 9

}
else {

c = new Circle(i); // 12
is_fat = c.isFat (); // 13
d = c; // 14

}
if (! is_fat) d.draw(); // 16

} // 17

public static void main(String args []) // 19
{ f((short) 11); } // 20

}

Listing 2.15: Drawable interface for Type Inference Test Program

public interface Drawable {
public void draw();

}

Listing 2.16: Circle class for Type Inference Test Program

public class Circle implements Drawable {
public int radius;
public Circle(int r) {radius = r;}
public boolean isFat () {return false;}
public void draw() {

// Code to draw ...
}

}

Listing 2.17: Rectangle class for Type Inference Test Program

public class Rectangle implements Drawable {
public short height , width;
public Rectangle(short h, short w) {

height = h; width = w; }
public boolean isFat () {return (width > height);}
public void draw() {

// Code to draw ...
}
}

37

Listing 2.18: Try Finally Test Program

public class TryFinally {

public static void main(String [] args) {
try {

System.out.println ("try");
}finally{

System.out.println (" finally ");
}

}

}

Figure 2.11: Control flow graph for the control flow program.

version uses a Java subroutine (section d) to implement the finally clause of the test program, which is
invoked from sections b and e.

In our tests, the decompiled TryFinally test programs must use a try-finally block to be classified as
correct, rather than relying on a combination of try-catch and in-lined finally clause code.

ControlFlow

ControlFlow [116] is a program which tests a decompiler’s handling of control flow. The program contains
two while loops: one outer, infinite loop; and one inner loop which is contained within a try-catch block.
If the inner loop throws a RuntimeException then the outer loop continues otherwise the outer loop is
broken.

Exceptions

The Exceptions test program [116] contains two intersecting try-catch blocks. The intersecting try-catch
block is allowed in Java bytecode but would not be generated by a Java compiler - the program here is
created using Jasmin. The program used in the original survey [55] is incorrect and Dava, which should
be able to decompile the program, exits with a null pointer exception. A re-written version (Listing 2.23,
page 41) is used in our tests based on the call graph in the original paper [116]. Figure 2.12, page 41
shows the program’s control flow graph and outlines the try-catch blocks.

38

Listing 2.19: Try Finally Test Program javac - Jasmin Source

.bytecode 50.0

.source <Unknown >

.class public TryFinally

.super java/lang/Object

.method public <init >()V
.limit stack 1
.limit locals 1

0: aload_0
1: invokespecial java/lang/Object/<init >()V
4: return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 2
.limit locals 2

.catch all from a to b using c

.catch all from c to d using c
a:

0: getstatic java.lang.System.out Ljava/io/PrintStream;
3: ldc "try"
5: invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

b:
8: getstatic java.lang.System.out Ljava/io/PrintStream;

11: ldc "finally"
13: invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
16: goto e

c:
19: astore_1

d:
20: getstatic java.lang.System.out Ljava/io/PrintStream;
23: ldc "finally"
25: invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
28: aload_1
29: athrow

e:
30: return

.end method

39

Listing 2.20: Try Finally Test Program Jikes - Jasmin Source

; Produced by NeoJasminVisitor (tinapoc)
; http :// tinapoc.sourceforge.net
; The original JasminVisitor is part of the BCEL
; http :// jakarta.apache.org/bcel/
; Tue Jun 16 16:26:04 BST 2009

.bytecode 48.0

.source <Unknown >

.class public TryFinally

.super java/lang/Object

.method public static main([Ljava/lang/String ;)V
.limit stack 2
.limit locals 3

.catch all from a to c using b

.catch all from e to f using b

a:
getstatic java.lang.System.out Ljava/io/PrintStream;
ldc "try"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
goto e

b:
astore_1
jsr d

c:
aload_1
athrow

d:
astore_2
getstatic java.lang.System.out Ljava/io/PrintStream;
ldc "finally"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V
ret 2

e:
jsr d

f:
return

.end method

.method public <init >()V
.limit stack 1
.limit locals 1

aload_0
invokespecial java/lang/Object/<init >()V

return

.end method

40

Listing 2.21: Control Flow Test Program

public class ControlFlow {
public static int foo(int i, int j) {

while (true) {
try{

while (i < j)
i = j++/i;

}catch (RuntimeException re) {
i = 10;
continue;

}
break;

}
return j;

}

public static void main(String [] args) {
System.out.println(foo(1,2));

}
}

Figure 2.12: Control flow graph for the exceptions test program [116]. Solid edges indicate normal control
flow while dashed edges represent exception control flow.

41

Listing 2.22: Control Flow Test Program

; Produced by NeoJasminVisitor (tinapoc)
; http :// tinapoc.sourceforge.net
; The original JasminVisitor is part of the BCEL
; http :// jakarta.apache.org/bcel/
; Thu Jun 18 15:43:18 BST 2009

.bytecode 50.0

.source <Unknown >

.class public ControlFlow

.super java/lang/Object

.method public <init >()V
.limit stack 1
.limit locals 1

aload_0
invokespecial java/lang/Object/<init >()V

return

.end method

.method public foo(II)I
.limit stack 2
.limit locals 4

.catch java/lang/RuntimeException from a to b using c
a:

iload_1 ;1
iload_2 ;2
if_icmpge b ;3
iload_2 ;4
iinc 2 1 ;5
iload_1 ;6
idiv ;7
istore_1 ;8
goto a ;9

b:
goto d ;10

c:
astore_3 ;11
getstatic java.lang.System.out Ljava/io/PrintStream; ;12
aload_3 ;13
invokevirtual java/io/PrintStream/println(Ljava/lang/Object ;)V ;14
bipush 10 ;15
istore_1 ;16
goto a ;17

d:
iload_2 ;18

e:
ireturn ;19

.end method

42

Listing 2.23: Exception Test Program (Jasmin)

.class Exceptions

.super java/lang/Object

.method <init >()V
.limit stack 1
.limit locals 1
aload_0
invokespecial java/lang/Object/<init >()V
return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 1
.limit locals 1
new Exceptions
invokespecial Exceptions/<init >()V
return

.end method

.method public Exceptions ()V
.limit locals 1
.limit stack 2

.catch java/lang/Exception from c to f using e

.catch java/lang/RuntimeException from b to d using g

a:
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "a"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

b:
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "b"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

c:
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "c"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

d:
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "d"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

f:
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "f"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

return

;catch blocks
e:

astore_0
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "e"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

goto f
g:

astore_0
getstatic java/lang/System/out Ljava/io/PrintStream;

ldc "g"
invokevirtual java/io/PrintStream/println(Ljava/lang/String ;)V

goto f

.end method

43

Optimised

Optimised was generated by using the Soot optimiser [164] on the TypeInference test program (listing
2.14, page 37). An example of an optimisation that has been performed is the replacement of the dup
opcode (which duplicates the value on the top of the stack) with load and store instructions. Listing
2.24, page 45 shows the Jasmin source for the TypeInference test program and listing 2.25, page 46 shows
the Jasmin souce for the Optimised test program. The optimised program’s f method is 3 bytes smaller
than in the original program.

Args

Args (listing 2.26, page 47) re-uses the local variable slot 0 in the main method. At the start of the
method local variable slot 0 is of type String[] but it is then re-used as type int.

connectfour

The connectfour test program [59] is an implementation of the game Connect Four originally written in
Ada and compiled with JGNAT [3] to Java bytecode. This program provides an example of a source
language other than Java for a Java decompiler to handle. Such programs potentially contain code
which cannot easily be decompiled to Java source due to unexpected bytecode sequences generated by a
non-Java to Java bytecode compiler. The original survey used a different Ada program compiled to Java
bytecode which we could not obtain.

2.4.2 Measuring the Effectiveness of Java Decompilers

The effectiveness of a Java decompiler, depends heavily on how the bytecode was produced. Arbitrary
bytecode can contain instruction sequences for which there is no valid Java source due to the more
powerful and less-restrictive nature of Java bytecode. For example there are no arbitrary control flow
instructions in Java but there are in Java bytecode. In fact, many Java bytecode obfuscators rely on the
fact that most decompilers fail when encountering unexpected, but valid, bytecode sequences [12].

Naeem et al. [129] suggest using software metrics [73, 90] for measuring the effectiveness of decompil-
ers. They compare the output of several decompilers against the input programs using software metrics.
Software metrics are a good measure of the complexity of the output of a decompiler however they cannot
quantify the effectiveness of the general output of a decompiler.

Decompilers produce output of varying degrees of correctness and some produce no output at all.
Comparing program metrics of a source program to a syntactically incorrect output program could prove
difficult as it may require parsing of a syntactically incorrect program. Class files generated using an
assembler or other language to bytecode compiler also present a problem for this suggested technique as
the output Java source has no equivalent input Java source to be compared against.

The output of a Java decompiler can, crudely, be divided into three categories:

1. semantically and syntactically correct,

2. syntactically correct and semantically incorrect and

3. syntactically incorrect.

Clearly, a decompiler which produces output of the first category is desirable.
For each program, decompiler pair, we give a score between 0 and 9 (see Figure 2.13). A score of

0 is a perfect, or good, decompilation whereas 9 means that the decompiler failed and no output was
produced. This is loosely based on Java decompiler evaluation categories used by Dyer [48].

The first two categories, 0 and 1 indicate output which is both syntactically correct Java and seman-
tically equivalent to the original. Category 1 programs, however contain code which is less readable (e.g.
excessive use of labels, while loops instead of for loops etc) and/or code for which no type inference has
been performed.

Programs classified as 2, 3, 4 indicate varying levels of syntactically incorrect programs. A category
2 program indicates a program with small syntax errors, such as a missing variable declaration, that can
be easily corrected to produce a semantically correct program. Category 3 programs contain syntactic

44

Listing 2.24: Jasmin source for the TypeInference test program

.bytecode 50.0

.source <Unknown >

.class public Sable

.super java/lang/Object

.method public <init >()V
.limit stack 1
.limit locals 1

0: aload_0
1: invokespecial java/lang/Object/<init >()V
4: return

.end method

.method public static f(S)V
.limit stack 4
.limit locals 5

Label3:
0: iload_0
1: bipush 10
3: if_icmple Label0
6: new Rectangle
9: dup

10: iload_0
11: iload_0
12: invokespecial Rectangle/<init >(SS)V
15: astore_2
16: aload_2
17: invokevirtual Rectangle/isFat()Z
20: istore 4
22: aload_2
23: astore_3
24: goto Label1

Label0:
27: new Circle
30: dup
31: iload_0
32: invokespecial Circle/<init >(I)V
35: astore_1
36: aload_1
37: invokevirtual Circle/isFat()Z
40: istore 4
42: aload_1
43: astore_3

Label1:
44: iload 4
46: ifne Label2
49: aload_3
50: invokeinterface Drawable/draw()V 1

Label2:
55: return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 1
.limit locals 1

0: bipush 11
2: invokestatic Sable/f(S)V
5: return

.end method

45

Listing 2.25: Jasmin source for the Optimised (TypeInference) test program

.bytecode 46.0

.source Optimised.java

.class public Optimised

.super java/lang/Object

.method public <init >()V
.limit stack 1
.limit locals 1

0: aload_0
1: invokespecial java/lang/Object/<init >()V
4: return

.end method

.method public static f(S)V
.limit stack 3
.limit locals 2

Label3:
0: iload_0
1: bipush 10
3: if_icmple Label0
6: new Rectangle
9: astore_1

10: aload_1
11: iload_0
12: iload_0
13: invokespecial Rectangle/<init >(SS)V
16: aload_1
17: invokevirtual Rectangle/isFat()Z
20: istore_0
21: aload_1
22: astore_1
23: goto Label1

Label0:
26: new Circle
29: astore_1
30: aload_1
31: iload_0
32: invokespecial Circle/<init >(I)V
35: aload_1
36: invokevirtual Circle/isFat()Z
39: istore_0
40: aload_1
41: astore_1

Label1:
42: iload_0
43: ifne Label2
46: aload_1
47: invokeinterface Drawable/draw()V 1

Label2:
52: return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 1
.limit locals 1

0: bipush 11
2: invokestatic Optimised/f(S)V
5: return

.end method

46

Listing 2.26: Variable re-use test program

.class Args

.super java/lang/Object

.method <init >()V
.limit stack 1
.limit locals 1
aload_0
invokespecial java/lang/Object/<init >()V
return

.end method

.method public static main([Ljava/lang/String ;)V
.limit stack 2
.limit locals 1

iconst_0
istore_0

getstatic java/lang/System/out Ljava/io/PrintStream;
iload_0
invokevirtual java/io/PrintStream/println(I)V

return

.end method

errors which are harder to correct, such as programs with goto statements (which do not exist in Java),
and category 4 programs contain extreme syntax errors which are very difficult or impossible to correct.

Programs classified as 5, 6, 7 are syntactically correct but are not semantically equivalent to the
input program. These categories of programs are, in a sense, worse than syntactically incorrect programs
as they re-compile without error and may contain subtle semantic errors which are not obvious, thus
large programs in these categories would require a lot of testing to ensure their correctness. Programs
in category 5 contain minor semantic errors which when corrected produce a program semantically
equivalent to the input program. Category 6 and 7 contain harder to correct semantic errors and
indicate programs that are dramatically semantically different from the input program.

Programs classified as category 8 are incomplete programs which are not decompiled in their entirety,
for example a program which is missing inner classes.

Category 9 indicates that a decompiler failed to produce any output at all, and most likely failed to
parse the input file. Problems could occur due to arbitrary bytecode or the latest Java class files which
decompilers are not expecting.

As the categories increase the difficulty to read and understand the code also increases, for example
both category 0 and 1 are semantically correct but category 1 is hard to read. Category 2 and higer
programs are harder to understand as they are syntactically and/or semantically incorrect.

2.4.3 Summary of Results

No decompiler was able to decompile all test programs with JODE decompiling the most programs
correctly. JODE only managed to decompile 5 programs while four (unmaintained) decompilers could not
decompile any of the test programs correctly. The top four decompilers (excluding obsolete SourceAgain)
were Java Decompiler, JODE, Dava and Jad whereas the worst decompilers were the unmaintained
commercial decompilers - SourceTec, ClassCracker3 and Mocha. Some decompilers failed simply because
they could not parse the latest class files or arbitrary class files.

Dava, surprisingly, was better at decompiling the javac bytecode test programs than the arbitrary
test programs. Dava is the joint second best (with JODE) based on our effectiveness measures (ex-
cluding SourceAgain), but one of the best arbitrary bytecode decompilers along with Java Decompiler -
Java Decompiler slighlty outperforms Dava in the arbitrary bytecode tests. Dava performs similarly to
jdec with javac generated bytecode, both decompiling two of these correctly. Overall Dava decompiles
correctly twice the number of programs that jdec decompiles.

Java Decompiler scored the highest using our effectiveness measures, beating Jad and JODE by

47

Score semantics syntax output result examples
0 correct correct semantically and

syntactically cor-
rect program
with perfect/good
source code layout

perfect decompila-
tion

1 correct correct semantically and
syntactically cor-
rect program with
‘ugly’ source code
layout and/or no
type inference

unreconstructed
control flow state-
ments, unrecon-
structed string
concatenation,
unused labels, no
type inference

2 incorrect incorrect easy to correct syn-
tax errors which
produce a seman-
tically correct pro-
gram

boolean typed as
int, missing vari-
able declaration

3 incorrect incorrect difficult (but possi-
ble) to correct syn-
tax errors which
produce a seman-
tically correct pro-
gram

code with goto
statements

4 incorrect incorrect very difficult (or
nearly impossible)
to correct syntax
errors required to
produce a seman-
tically correct pro-
gram

invalid variable use,
obviously incor-
rect code, massive
source re-write
required

5 incorrect correct easy to correct se-
mantic errors which
produce a seman-
tically correct pro-
gram

missing typecasts

6 incorrect correct difficult (but possi-
ble) to correct se-
mantic errors which
produce a seman-
tically correct pro-
gram

incorrect control
flow

7 incorrect correct very difficult (or
nearly impossible)
to correct semantic
errors required to
produce a seman-
tically correct pro-
gram

incorrectly nested
try-catch blocks,
massive source
re-write required

8 incorrect incorrect incomplete decom-
pilation

missing large sec-
tions of source,
missing inner
classes

9 Fail Fail decompiler fails
upon execu-
tion/produces
no source output

decompiler fails
to parse arbitrary
bytecode

Figure 2.13: Decompilation correctness classification

48

Figure 2.14: Decompiler Test Results

(a) Decompiler Effectiveness (b) Correct Decompilations

performing slightly better at decompiling the arbitrary bytecode programs. JODE was able to decompile
one more program correctly than Java Decompiler. JODE was the best decompiler in the original survey
and is still one of the best in our evaluation but Java Decompiler beats JODE with our effectiveness
measures and only decompiles one less program correctly than JODE.

Every decompiler that could parse the latest Java class file format could decompile the Fibonacci test
program. The decompilers showed varying degrees of success with the other programs; we discuss the
results here.

Figure 2.14, page 49 shows a table of raw results detailing our effectivess score given to each decompiler
for each program. Figures 2.15(a) and 2.15(b), page 49 show the the decompiler effectiveness scores. The
charts show percentages of effectiveness with higher percentage meaning a higher effectiveness score,
calculated from table 2.14, page 49.

49

2.5 Discussion of Results

In this section we discuss the results of the tests, explaining the output of the decompilers when they
failed to decompile a program. Program listings of the decompiled programs are in appendix A, beginning
on page 113. Some decompilers, such as Mocha and SourceTec, could not parse the latest Java class file
versions.

2.5.1 ClassCracker3

ClassCracker3 did not decompile any of our test programs completely with just the method signatures
in the resulting Java source file. The original survey found a similar result and the author concluded
that the decompiler ‘needs some work to cater for the tricky cases covered in these tests’ [55].

2.5.2 Dava

Dava, being a decompiler aimed at arbitrary bytecode, performed better than most other decompilers
in tests with class files that were not generated by javac. However, for the others it did not perform as
well. It could not decompile the trivial, TryFinally program which most other decompilers could. Dava
attempts to reconstruct the program’s control flow whereas other decompilers recognise the pattern of a
try-finally block. Dava perfectly decompiles the Exception test program which is unsurprising as this test
program is from the creators of Dava. Interestingly, Dava was unable to correctly decompile the Sable
test program, which was created originally to show that Dava outperforms other decompilers, due to a
failure to insert a simple typecast for an argument in a method invocation. However, the main problem
that the Sable test program is designed to show, type inference of a specific variable, was performed
correctly.

Casting

The decompiled casting test program (Listing A.2, page 113) indicates that Dava was unable to detect the
need to insert a cast, and therefore Dava produced a semantically incorrect program. The decompiled
program iterates through the characters as in the original program (except using Unicode instead of
ASCII) but in the System.out.println invocation there is no cast inserted. The output of the program,
when executed, is therefore two lists of characters rather than the original ASCII code followed by ASCII
character.

Args

Dava correctly decompiled the Args test program (Listing A.3, page 113) but typed the int local variable
as byte, and inserted two unnecessary typecasts. We therefore classify this program as semantically
equivalent but with ‘untidy’ source code.

ControlFlow

Dava produces a semantically equivalent ControlFlow program (Listing A.4, page 114) which is slightly
different from the original program. Dava’s program contains a labelled while loop, and uses labelled
continue statements to continue iterating from two points: inside the try section and inside the catch
section. This version of the program has only one loop and uses a labelled continue to mimic the inner
loop in the original program (Listing 2.21, page 41). Both Java class files contain the same bytecode
sequences though they are generated from different Java source (Listing 2.22, page 42).

Sable

Dava correctly performs type inference on the Sable test program (Listing 2.14, page 37) but unfortu-
nately fails to insert a typecast in the method invocation for method f , which results in a syntactically
incorrect Java program (Listing A.5, page 115). The main problem, type inference for variable d, was
solved correctly and inserting a type cast results in a semantically and syntactically correct program.

50

Usa

Dava failed to correctly decompile the Usa test program resulting in a class file with out the inner classes
(Listing A.6, page 115). The resulting program contains none of the inner classes present in the original
program (Listing 2.13, page 36).

Exceptions

Dava fails to correctly decompile the Exceptions test program, producing an incomplete program (List-
ing A.1, page 113). This is surprising because the program was designed by the creators of Dava to
demonstrate their decompiler [116]. The previous version of Dava, 2.3.0, could decompile the program
correctly and the result decreased the effectiveness score in this version.

TryFinally

The decompiled TryFinally program (Listing A.7, page 116) is interesting as it decompiles a nearly
syntactically, and somewhat semantically correct program. The decompiled program contains a small
syntactic error (variable $r5 was originally $r4, which had already been declared) which when corrected
produces a compiled Java program which produces an equivalent output to the original program. Even
though both programs produce the same output they are not identical. The decompiled program does
not make use of a try-finally block, and instead uses a mix of try-catch blocks and a labelled while-loop
and a labelled continue statement. If re-compiled the program does not produce the same bytecode as
the original program.

Optimised

The optimised program is incorrect as it is missing a typecast; this is the same problem as the type
inference and casting test programs.

connectfour

Dava failed to correctly decompile the connectfour test program with several syntactic and semantic
errors. Listing A.9, page 114 shows an extract from the decompiled program where a boolean is compared
with an int.

2.5.3 Jad

Jad produced some pleasing results, with a similar overall score to Dava. Jad performs best with javac
generated code and fails to correctly decompile arbitrary bytecode. Jad also fails the trivial TryFinally
test program which is due to Jad being outdated - finally blocks used to be implemented using subroutines
but javac no longer generates subroutines and instead in-lines finally blocks. Jad correctly decompiles
three javac generated class files whereas Dava only correctly decompiles two of these, which demonstrates
the difference between between the two types of decompiler. Jad is comparable to JODE and Dava and
overall performs very similarly.

Sable

Jad produced a semantically equivalent Java program (Listing A.10, page 118) but did not perform type
inference. Variable d (Obj in the decompiled program) is typed as Object, and an explicit typecast is
inserted at the point where the draw() method is invoked. We therefore classify this program as category
1 - semantically and syntactically correct, but no type inference was performed.

ControlFlow

Jad decompiles the ControlFlow program correctly (Listing A.11, page 118) though produces slightly
different Java source than the original. The program uses a for-loop instead of a while loop for the inner
loop and a do-while loop instead of a standard while loop for the outer loop.

51

Casting

The casting program is missing a typecast - the same problem that Dava had with this program.

Usa

The Usa program is syntactically incorrect as it includes a program statement before a super() call to
the parents constructor. In Java, the super() call must be the first statement in a constructor.

Exceptions

Jad fails to correctly decompile the Exceptions test program, producing a syntactically incorrect program
(Listing A.14, page 120). The program contains some illegal Java code, including goto statements and
the word ‘this’. The program also contains only one try-catch block which includes ‘c’ and ‘d’ in the
try clause and ‘e’ in the catch clause. The program is syntactically incorrect and not equivalent to the
original.

Optimised

The Optimised test program is incorrectly decompiled by Jad. The program (Listing A.15, page 121)
contains only one local variable in the f method compared with 4 in the original. The program also
contains some bytecode instructions where Jad could not determine how the objects are constructed
using the optimisations. Jad was expecting javac generated code so could not deal with the unexpected
optimised sequence for object construction.

TryFinally

Jad produces a syntactically incorrect TryFinally program (Listing A.16, page 121). The decompiled
program contains illegal Java code as it had trouble analysing the control flow of the program.

Args

Jad produces a syntactically incorrect Java program (Listing A.17, page 122). Jad attempts to assign
an integer to an array of String objects, which is syntactically incorrect.

connectfour

Jad failed to parse the connectfour test program.

2.5.4 Java Decompiler

Java Decompiler is a newer decompiler which outperforms all other decompilers in terms of our effec-
tiveness measures. The reason which Java Decompiler out performs Dava is that it is correctly able to
decompile the TryFinally and Usa test programs, which are both javac generated. Java Decompiler has
trouble decompiling arbitrary bytecode but does this better than all other decompilers, including Dava.

We originally evaluated version 0.2.7; our updated evaluation uses 0.3.2. There are some improve-
ments since 0.2.7 but some decompilations are worse. However, the latest version is overall a slight
improvement.

Casting

Java Decompiler produces a semantically incorrect program (Listing A.19, page 123) in the same way
that Dava does (Listing A.2, page 113). The decompiled program loop iterates through the characters as
in the original program (except using unicode instead of ASCII) but in the System.out.println invocation
there is no cast inserted. The output of the program, when executed, is therefore two lists of characters
rather than the original ASCII code followed by ASCII character

52

Usa

The Usa program is semantically correct but contains some redundant code (Listing A.20, page 123).

Sable

Java Decompiler produces a syntactically incorrect program, with the same problem as in the Casting test
program - failure to insert a typecast. Dava also failed to insert the same typecast. Further interesting
syntactic errors include object instantiations that are spread over two lines where the first uses the new
keyword along with the class name. Java Decompiler attempts to call the object’s constructor separately,
on the next line. An object’s constructor method is known by the special name <init> in bytecode and
this is what Java Decompiler attempts to invoke. The program also contains too few variables and an
attempt is made to assign a boolean to a short.

ControlFlow

Java Decompiler produces a semantically incorrect program (Listing A.22, page 124) containing an extra
break statement and some labels. If the syntactic errors are removed the program is almost semantically
correct.

Exceptions

Java Decompiler fails to correctly decompile the Exceptions test program resulting in a syntactically
incorrect program (Listing A.23, page 125). The program uses the word ‘this’ as a variable name which
is a reserved word in Java. Correcting these syntactic errors leads to a semantically incorrect program
(see Figure 2.12, page 125).

Optimised

Java Decompiler produces a syntactically incorrect program with some interesting syntactic errors (List-
ing A.24, page 125) in the same way as the TypeInference test program.

Args

Java Decompiler produces a semantically correct Java program (Listing A.25, page 125).

connectfour

Java Decompiler produces a syntactically incorrect connectfour program with several syntactic errors.
One such error is similar to the optimised test program which suggests the Ada-to-Java compiler uses
an optimised form of object instantiation (Listing A.26, page 123). Many of the methods which throw
exceptions are missing the class name of the exception (Listing A.27, page 123).

2.5.5 jdec

jdec is another javac orientated decompiler but does not perform as well as the other newer decompilers.
Java Decompiler can correctly decompile inner classes while jdec cannot. jdec also cannot decompile
arbitrary bytecode correctly.

Casting

jdec decompiles the Casting test program with the same semantic error (Listing A.28, page 126) as
other decompilers such as Dava (Listing A.2, page 113) - the crucial cast from char to int is missing.
The decompiled program loop iterates through the characters as in the original program but in the
System.out.println invocation there is no cast inserted. The output of the program, when executed, is
therefore two lists of characters rather than the original ASCII code followed by ASCII character

53

Usa

jdec fails to decompile the Usa test program, decompiling only the main class (Listing A.29, page 127).
Dava also has this problem.

Sable

jdec produces a syntactically and semantically incorrect test program (Listing A.30, page 128). This
program contains two Rectangle objects rather than the one Rectangle original and one Drawable
object in the original.

ControlFlow

jdec produces a syntactically incorrect control flow test program with a catch clause intersecting a else
clause which, if corrected produces a semantically incorrect program (Listing A.31, page 129).

Exceptions

jdec only partially decompiles the exceptions test program, with blocks ‘d’, ‘e’ and ‘f’ missing. The
program is syntactically and semantically incorrect (Listing A.32, page 130).

Optimised

jdec produces a syntactically and semantically incorrect optimised program, with several syntactic errors
(Listing A.33, page 131). The program contains variable assignment statements within constructor
invocation parameters and uses the variable this in many places. The method is static so should contain
no use of the this keyword. The method also contains no arguments which is strange because jdec
introduced a variable called arg0.

Args

jdec produces a syntactically incorrect program (Listing A.34, page 132), in a similar way to Jad by
attempting to assign an integer to a string array. jdec also attempts to re-declare the method argument.

connectfour

jdec produces a seemingly incomplete, and syntactically incorrect program with many empty blocks (for
example, listing A.37, page 133) and syntax errors. The program has several examples of missing commas
within method parameter lists (for example, listing A.36, page 127) and assignment statements within
array declarations (for example, listing A.35, page 133).

2.5.6 JODE

JODE has a similar overall result to Dava and Jad but is beaten using our effectiveness measures by
Java Decompiler. However, Java Decompiler and Jad decompile fewer test programs completely correct
than JODE. Surprisingly JODE is unable to correctly decompile the TryFinally test program. JODE
was the best decompiler in the original survey and is still one of the best in our evaluation.

TryFinally

JODE’s decompilation of the TryFinally test program (Listing A.38, page 133) fails to include a try-
finally block but instead includes a try-catch block and an incorrectly typed exception variable. The
catch clause includes an exception variable typed as Object but such a variable must be typed Exception
or a sub-class of Exception. This makes the decompiled program both syntactically and semantically
incorrect. The finally clause code is duplicated after the try-catch block, and if the syntactic error is
corrected the program produces the same output as the original. However, this is not the same as the
original program which uses a try-finally block rather than a try-catch block.

54

Usa

JODE could not parse the inner class test program, exiting with an exception.

ControlFlow

JODE produces a semantically correct decompilation (Listing A.39, page 134) of the control flow test
program (Listing 2.21, page 41). However, the source is more obtuse than the original. JODE’s de-
compilation uses for-loops instead of while loops which, while semantically equivalent, do not look as
user-friendly as the original. In this version of the program there is no continue statement in the catch
clause but instead a break is used in the try clause. Control flows from the catch clause to the beginning
of the loop as there is no break clause.

Exceptions

JODE could not decompile the exceptions test program, exiting with an exception regarding the inter-
secting try-catch blocks (Listing A.41, page 134).

Optimised

JODE has a slight problem with object construction in the optimised test program, similar to other
decompilers such as Java Decompiler. If the constructor problem is corrected the program is semantically
correct, including the correctly typed variable (Listing A.41, page 134).

connectfour

JODE could not parse the Ada test program and exits with an exception (Listing A.42, page 135), due
to the arbitrary nature of the bytecode instructions.

2.5.7 jReversePro

jReversePro performed badly in many of the tests and was unable to decompile the test programs
correctly, as it can not parse the latest class file format. In fact, jReversePro failed to parse many of the
test programs and only partially decompiled others. The remaining programs produced were semantically
incorrect.

Fibo

jReversePro is unable to decompile the trivial Fibo test program as it could not parse the latest class
file format (Listing A.43, page 135).

Casting

jReversePro was able to parse the simpler casting test program but produced a semantically incorrect
program (Listing A.44, page 136). The program fails to include the crucial cast in the same way as other
decompilers such as Jad and Java Decompiler but also contains an infinite loop due to the inclusion of
an extra variable.

Usa

The inner class program, as decompiled by jReversePro, contains none of the inner classes (Listing A.45,
page 136).

Sable

jReversePro is unable to parse the type inference test program and exits with an exception.

55

TryFinally

jReversePro does not fully decompile the try finally test program as it leaves out the most important
part: the try-finally block.

Exceptions

jReversePro exits with an exception due to intersecting try-catch blocks (Listing A.47, page 137), like
JODE.

Optimised

jReversePro was able to parse the optimised program, most likely because the optimiser output an
earlier version class file format, but produced a syntactically incorrect program (Listing A.48, page 138).
The program contains several syntactic errors, included attempting to assign a boolean to an int and
constructor problems.

Args

jReversePro incorrectly decompiled the variable re-use test program producing a syntactically incorrect
program (Listing A.49, page 139), similar to Jad and Java Decompiler.

connectfour

jReversePro produced a syntactically incorrect and incomplete connectfour test program. jReversePro
has many blocks of missing code (Listing A.50, page 133), like jdec (Listing A.37, page 133) and contains
many syntactic errors such as incomplete if-then-else blocks appearing within loops (Listing A.51, page
133).

2.5.8 Mocha

Mocha is an obsolete decompiler which never made it past a beta version, though we include it here as
it is still available. The results from Mocha are not surprising as they confirm that Mocha is no longer
a viable decompiler for the latest Java class files. Mocha fails to parse all programs generated by the
latest version of javac, and also fails to parse two of the arbitrary test programs.

Args

Mocha fails to produce a syntactically correct program, producing a similar program to other decompilers
such as jReversePro and Jad, which attempts to assign an int to an array of strings (Listing A.52, page
139).

Exceptions

Mocha could not decompile the exceptions test program and exits with a ‘Method Exceptions: Flow
analysis could not complete’ error message, due to the intersecting try-catch blocks.

connectfour

Mocha’s decompilation of the connectfour test program contains many syntactic errors (for example,
listing A.53, page 133), and some bytecode instructions are left in place (for example, listing A.55, page
140 and listing A.54, page 135).

56

2.5.9 SourceAgain

SourceAgain is the only commercial decompiler that performed well in our tests. SourceAgain is able to
perfectly decompile four of our test programs including the Args test program which is only decompiled
correctly by JODE and Dava. However, the product is no longer sold or supported and is only available
online to decompiler single class files. SourceAgain is therefore obsolete and not useful for any real-world
decompilation tasks.

Casting

SourceAgain, like other decompilers such as Jad, fails to insert the crucial cast resulting in a semantically
incorrect program (Listing A.56, page 140).

Usa

SourceAgain fails to correctly decompile (Listing A.45, page 136) the inner class test program but unlike
other decompilers, such as jReversePro, this is because the decompiler is web-based and only accepts
single class files - the inner classes could not be uploaded along with the main class. The original survey
[55] used the professional version of the decompiler which was able to correctly decompile inner classes;
this is no longer available.

Sable

SourceAgain produces a semantically equivalent type inference program but could not correctly type
the variable d (Listing A.58, page 141). The online decompiler warns that it could not determine the
inheritance relationship between the objects as a result of the restriction of decompiling single class files.
In the original survey [55] the professional version of SourceAgain did not correctly type the variable.

TryFinally

SourceAgain produces a syntactically incorrect try finally test program containing two try-finally blocks,
duplicated finally clause code and an undeclared variable (Listing A.59, page 141).

ControlFlow

SourceAgain correctly decompiles the control flow program producing a semanticaly equivalent, though
some-what obtuse, program (Listing A.60, page 142). SourceAgain produces a very similar output to
Dava (Listing A.4, page 114) which is slightly different from the original program. Both Java class files
contain the same bytecode sequences though they are generated from different Java source (Listing 2.22,
page 42).

Exceptions

SourceAgain produces a semantically incorrect exceptions test program (Listing A.61, page 142) which
contains all the necessary blocks, unlike other decompilers, but is not semantically equivalent to the
original. For example, block ‘d’ should be contained within a catch clause, leading to block ‘e’ if an
exception is thrown.

Optimised

SourceAgain produces a syntactically incorrect program (Listing A.62, page 143) containing, like other
decompilers, object initialisation and constructor problems. SourceAgain also includes self assignments
which aren’t necessary.

57

connectfour

SourceAgain produces a syntactically incorrect connectfour test program but with fewer errors than other
decompilers. If problems such as misnamed this variables (Listing A.63, page 140) and multiple variable
declarations (Listing A.64, page 140) are removed the program becomes compilable and semantically
correct.

2.5.10 SourceTec (Jasmine)

SourceTec (Jasmine), a patch to Mocha, also fails to parse all javac generated class files producing the
same results as Mocha.

58

2.6 Conclusion and Future Work

Many of the companies producing commercial decompilers have disappeared and their decompilers have
been left unmaintained. Even some free and/or open-source decompilers such as Jad and JODE have
been unmaintained for some time. Jad is not open-source so the project cannot be taken up by others
and the last major update was in 2001.

Decompilation has many uses in the real world, such as the recovery of lost source code for a cru-
cial application [56], therefore if the quality of Java decompilers increased they might be of more use
commercially.

One of the most active decompiler projects is the open-source Dava [114, 128, 127, 115, 116] de-
compiler, part of the Soot Optimisation Framework [164], which is a research project carried out by
the Sable Research Group at McGill University. Dava differs from other decompilers in that it aims
to decompile arbitrary bytecode whereas other decompilers rely on known patterns produced by Java
compilers (and this is usually javac). Dava is better at decompiling arbitrary bytecode whereas other
decompilers are better at decompiling javac generated bytecode. However, Java Decompiler was just as
good at decompiling arbitrary bytecode according to our effectivess score. Java Decompiler is aimed at
decompiling javac generated bytecode.

A decompiler aimed at decompiling arbitrary bytecode, like Dava, can be more useful in some in-
stances than a decompiler aimed at bytecode generated by a specific compiler. Java bytecode can be
generated by tools other than a Java decompiler and many decompilers are aimed at patterns produced by
Java decompilers and some specifically javac. Knowing the patterns that a compiler will produce makes
decompilation of bytecode easier and it can sometimes be just a matter of reversing those patterns.

Decompiling bytecode arbitrarily, i.e. not by inverting known patterns produced by compilers, can be
a disadvantage in some cases, for example Dava could not correctly decompile the trivial TryFinally test
program. Other decompilers could decompile this test program by finding a known pattern produced by
a compiler for try-finally blocks.

Though there is a lack of commercial Java decompilers Java bytecode decompilation and decompila-
tion in general are fruitful research areas. One of the main areas for research is type inference both in
bytecode (e.g. [13, 115, 92]) and machine code (e.g. [122]). The task of type inference in Java bytecode
is simpler than that of machine code due to the information contained within a Java class file - a Java
class file contains type information for fields and method parameters and returns.

Type inference is an interesting problem in decompilation and two of the best decompilers tested
(Dava and JODE) were both able to correctly type the variables in the type inference test. Most other
decompilers, which did not perform type inference, typed variables as Object and inserted a typecast
where necessary. The type inference problem is NP-Hard in the worst case [63], however, if the type
inference algorithm is optimised for the common-case rather than the worst case it is possible to perform
type analysis efficiently for most real-world code as worst-case scenarios are unlikely [13].

All the decompilers tested had some problems decompiling some of the tests. In terms of our effec-
tiveness measures, Dava, Jad, Java Decompiler and JODE were the four best decompilers (excluding
SourceAgain). Of these, JODE and Java Decompiler are the best decompilers: JODE correctly decom-
piles 5 out of the 10 test programs correctly and Java Decompiler performs best using our effectiveness
measures but decompiles one less program correctly. JODE is open-source and is therefore open to
further improvements but is not currently maintained, while Java Decompiler is in development and
available free (but is not open-source). Unfortunately Jad is unmaintained and so is not guaranteed to
work for future versions of Java class files. The commercial decompiler SourceAgain performs well in
the effectiveness measures, but was only able to decompile 4 programs correctly. SourceAgain performed
similarly to Dava but is now obsolete and only available as a web application which can decompile single
class files. We therefore exclude SourceAgain from our top decompilers, as it is not generally useful for
real-world programs - for example, it can’t decompile inner classes.

Java Decompiler is a newer decompiler in active development, which performs highest in our effec-
tiveness measures and correctly decompiles 4 out of 10 programs. This decompiler performs best at javac
generated bytecode and may improve in the future even more as it is in development.

Knowing the tool that generated a class file can be useful in knowing which decompiler to use. If a
class file was generated by javac then a javac specific decompiler would be more useful than an arbitrary
decompiler such as Dava. If the class file was generated by other means, or modified by an obfuscator or
optimiser, a javac specific decompiler would most likely fail so an arbitrary decompiler would be more

59

useful in this case.
It is interesting that some decompilers are better at certain things; this indicates that good decom-

pilation is theoretically possible. Further work will include investigating the possibility of implementing
a better decompiler, combining the best techniques from various decompilers.

We have demonstrated the effectiveness of several Java decompilers on a small set of test programs,
each of which were designed to test different problem areas in decompilation. Such a small test set of
programs may not be representative of real-world Java programs and, in fact, some problem areas tested
may not be of high relevance in real-world programs.

We proposed a system to quantify the effectiveness of a decompiler on our set of test programs,
however the analysis is some-what subjective and could be further formalised. This would enable us to
generalise our effectiveness measures, as the effectiveness values assigned to our test programs may not
be applicable in the context of other programs. We encourage the reader to study decompiler output in
appendix A.

In terms of our evaluation, Dava, Java Decompiler and JODE are the best decompilers. Dava faces
some challenges in decompilation of Java specific code while the other decompilers have problems with
arbitrary bytecode.

We have shown that, though not perfect, decompilers are a real threat to distributed Java bytecode
class files. Software companies would need to introduce technical measures to provide protection for their
intellectual property. One such method is software watermarking which does not attempt to stop software
theft but instead deters attackers by providing a method of proving ownership of copied software. The
next chapter presents a survey of static software watermarking techniques.

60

Chapter 3

A Survey of Static Software
Watermarking

Software watermarks can be broadly divided into two categories: static and dynamic [30]. The former
embeds the watermark in the data and/or code of the program, while the latter embeds the watermark
in a data structure built at runtime.

Figure 3.1 shows a very simple static watermarking system - The watermark W , the input program P
and an optional key K are fed into the embedder. If a key is used then the watermark is encrypted. The
embedder outputs a semantically equivalent program P

′
containing an extra field; this field contains the

watermark. A recogniser takes the watermarked program P
′
, looks for the watermark field and outputs

the original watermark W .
Figure 3.2 shows a very simple dynamic watermarking system - The watermark W , the input program

P and a key K are fed into the embedder. The key, in this case, is a secret input to the program. This
input causes a specific path through the program execution to be taken. The embedder outputs a new
program P

′
which, when executed with the secret input, generates the watermark. A recogniser inspects

the program P
′

while running, looking for value of the watermark variable and outputs the original
watermark W .

In comparison to a static system, a dynamic watermarking system needs to execute the program in
order to retrieve the watermark. The watermark is stored in the semantics of the program rather than
the syntax. Dynamic watermarks should, in theory, be resilient to semantics-preserving transformations.
Software watermarking algorithms can be further categorised based on the method of embedding the
watermark.

Figure 3.1: Simple Static Watermarking System

61

Figure 3.2: Simple Dynamic Watermarking System

Some of these categories include:

Abstract interpretation algorithms are static analysis based in which watermarking recovery is han-
dled by an abstract interpretation of the code semantics [38].

Basic block re-ordering algorithms encode a watermark by re-ordering the basic blocks of a program
and inserting jump statements to preserve the original control flow. One of the earliest software
watermarking algorithms [44] uses this technique.

Code replacement algorithms encode a watermark by replacing parts of a program, for example
by replacing certain op-codes with equivalent instructions. For example, Hydan, defines sets of
functionally-equivalent instructions and encodes information in machine code by using the appro-
priate instructions from each set [52].

Constraint based algorithms encode the watermark in a set of extra constraints to the original algo-
rithmic problem. The solution to this new problem will therefore satisfy the original problem and
the watermark constraints [142].

Dynamic pat h algorithms encode watermarks based on the dynamic branching behaviour of programs
by adding branches to program code [34].

Graph based algorithms encode the watermark in a graph structure and embed the graph structure
in a program. Venkatesan et al. [167] describe a static graph watermarking system in which the
watermark graph is merged with the program control flow graph.

Opaque predicate algorithms rely on being enclosed by a predicate whose outcome is known a priori.
It is difficult for automated software analysis to know the value of the predicate; therefore it is not
know whether the enclosed code (which may or may not be a watermark) could be removed [32].

Spread-spectrum algorithms were originally developed for multimedia watermarking [39]; in software
the idea is to spread the watermark across a program by modifying instruction frequencies [159]

Thread based algorithms encode watermarks within distinctive behaviour of threads added to pro-
grams [130].

Some of these could be implemented statically or dynamically, for example there are static [167] and
dynamic [30] graph watermarking algorithms.

62

3.1 Register Allocation Based Watermarks

Register allocation based watermarking algorithms are constraint-based static watermarking techniques.
Figure 3.7 shows the evolution of this family of algorithms on which we report previous findings, describe
some recent additions (including a correction to a published algorithm) and conclude by suggesting a
direction for future work.

Change this
to some-
thing better

3.1.1 Background
Keep back-
ground?

Graph Colouring

In graph theory, the simplest form of graph colouring is a way of colouring the vertices of a graph such
that no two adjacent vertices share the same colour. The graph colouring problem is NP-complete[89].

Figure 3.3: A graph with 4 vertices and 2 colours

Consider the simple graph in figure 3.3; the graph contains four vertices and four edges. Vertex a is
adjacent to vertices b and c therefore if a is red then b and c cannot be. Vertex d, on the other hand, is
not adjacent to a and can therefore also be coloured red. Vertices b and c are therefore coloured blue.
The smallest number of colours needed to colour this graph is 2. This is known as the chromatic number.

Figure 3.4: Example graph with 5 vertices and 3 colours

If we add another vertex, e, adjacent to c and d we must colour this with a third colour; e cannot be
blue as it is adjacent to c and it cannot be red as it is adjacent to d (figure 3.4). The chromatic number
of graph 2 is therefore 3.

Graph colouring has many real-world applications including register allocation in compilers [?].

Register Allocation

Register allocation is the process of assigning program variables to a finite number CPU registers [4].
Programmers can use any number of variables in their programs but there are a limited number of CPU
registers to actually store the values of those variables.

63

Listing 3.1: ’Example Pseudocode’

v1 := 1 + 1;
v2 := 2 + 5;
v3 := 3 + v1;
v4 := v1 + v2;
v5 := v2 + v3;

An interference graph is used to model the relationship between the variables in a program method.
Each vertex in the graph represents a variable and an edge between two variables indicates that their
live ranges overlap. Simple put, a variable is live if it has been computed and will be used before being
recomputed. We colour the graph in order to minimise the number of registers required and ensure that
two live variables do not share a register.

Definition 1. Variable liveness [20]: A program variable is considered live at point L in a program P if
there is a control flow path from the entry point of P to a definition of X and then through L to a use
of X at point U, which has the property that there is no redefinition of X on the path between L and the
use of X at U.

Consider the example pseudocode in listing 3.1 and it’s interference graph in 3.5. From the pseudocode
we can see that variable v5 is not live at the same time as any other variable and is therefore unconnected
in the graph. Variable v1, on the other hand, is live at the same time v2 and v3 are live; therefore they
are connected in the interference graph.

Figure 3.5: Example interference graph for listing 3.1

The graph in figure 3.5 can be coloured, as shown in figure 3.6, using 3 colours. This means that the
minimum number of registers needed to store the variables in the sample program is 3. Variables v1, v4
and v5 can use the same register because they are not live at the same time.

Figure 3.6: Example coloured interference graph for listing 3.1

The sample program could be converted into pseudo-assembly code, shown below, where add X, Y,

64

Listing 3.2: ’Example Pseudo-Assembly code’

add r1, 1, 1
add r2, 2, 5
add r3, 3, r1
add r1, r1, r2
add r1, r2, r3

Z adds together Y and Z and stores the result in X. Y or Z could be a literal value or the value in a
register.

We can see that r1, r2 and r3 correspond to the three colours in the interference graph.

Register Allocation in Java Byte Code

The Java virtual machine contains no registers but each method has access to a local variable table. The
compiler has to allocate each Java method’s variables to local variable slots. Watermarking by register
allocation can be implemented by changing the uses of the local variable slots. A watermark could be
included in each method in a Java program, or the watermark could be split and spread throughout the
program.

Expand on
this?

65

F
ig

u
re

3.
7:

E
vo

lu
ti

on
of

R
eg

is
te

r
A

ll
o
ca

ti
on

B
as

ed
S

of
tw

a
re

W
a
te

rm
a
rk

in
g
.

O
va

l
sh

a
p

es
re

p
re

se
n
t

n
ew

a
lg

o
ri

th
m

s,
w

h
il

e
re

ct
a
n

g
u
la

r
sh

a
p

es
re

p
re

se
n
t

ev
a
lu

a
ti

o
n

s.

66

3.1.2 The QP Algorithm

The QP algorithm [141] is a constraint-based watermarking algorithm based on the concept of graph
colouring. In the QP algorithm edges are added to the graph based on the value of the watermark. When
edges are added to an interference graph the vertices that become connected must be re-coloured - and
they cannot be assigned the same registers. In other words, we add a new constraint to the problem
(the extra edges) and when we compute the graph colouring we have a solution which solves the graph
colour problem and one which also includes the watermark.

The QP algorithm was proprosed to embed watermarks in any graph colouring solution and can be
applied to graph colouring for register allocation to embed watermarks in software.

The first step in the QP algorithm is to convert the message into binary, for example convert a string
into binary by using ASCII codes. The next step is to add additional edges to the interference graph,
in such a way that the extra edges encode the watermark. The QP algorithm requires that the vertices
of the graph are indexed and relies on the ordering of such indices for embedding and extraction. The
originally published QP algorithm contained a minor problem which assumed that every vertex in an
arbitrary graph could contain one bit of information; Zhu et al. proposed a clarified version of the
algorithm [174] shown in algorithm 1.

Algorithm 1 Clarified QP embedding algo-
rithm

Input: a graph G(V,E), a message M =
m0m1. . .
Output: a graph G′(V ′, E′) with embedded
message M
copy G(V,E) to G′(V ′, E′)
j = 0
for each bit in message as mi do

if vi has two candidate vertices vi1, vi2
then

j++
if mj = 0 then

add edge (vi, vi1) to E′

else
add edge (vi, vi2) to E′

end if
end if

end for
return G′(V ′, E′)

Algorithm 2 QP extraction algorithm

Input: a graph G(V,E) with embedded mes-
sage M
Output: a message M = m0m1. . .
copy G(V,E) to G′(V ′, E′)
for each pair of unconnected vertices vi, vj
do

n = number of vertices not connected to
vi between vi and vj
if n = 0 then
M = M + 0

else if n = 1 then
M = M + 1

else
n = number of vertices not connected to
vi between vj and vi
if n = 0 then
M = M + 0

else if n = 1 then
M = M + 1

else
message bit undefined

end if
end if

end for
return M

Definition 2. QP candidate vertices [141]: The nearest two vertices vi1 and vi2 which are not connected
to vi; i2 > i1 > i (mod n) and (vi, vi1), (vi, vi2) /∈ E and (vi, vj) ∈ E for all i < j < i1, i1 < j < i2

Figure 3.8 shows an example intereference graph for a program (it is not important which program,
in these examples). In order to embed the watermark 10110110102 in the interference graph we use
algorithm 1. Figure 3.9 shows the interference graph with dotted watermark edges; for clarity, these
lines are labeled with the watermark value.

For each message bit we take the vertex with the corresponding index and look at the next two
vertices which are not connected; if the message bit is 0 we add an edge between the current vertex and
the next unconnected vertex, otherwise we add an edge to the second unconnected vertex.

For example, the first message bit is 1. Vertex v0 is connected to vertices v1 and v2 therefore the
next two unconnected vertices are v3 and v4. The message bit to embed is 1 so we add an edge between

67

Figure 3.8: Example interference graph

v0 and v4. The next two unconnected vertices after v9 are v0 and v1; we add an edge between v9 and v0

because the watermark bit is 0.
The chromatic number of the original interference graph (figure 3.8) is 3, while the chromatic number

of the watermarked graph is 4.
In order to extract the secret message we consider all pairs of coloured vertices which do not have

edges between them. For each pair vi, vj we count how many vertices there are with indices between i
and j which are not connected to vi.

Definition 3. Value of the watermark bit in the QP extraction algorithm [142]:

1. If n(i, j) = 0, the watermark bit is 0

2. if n(i, j) = 1, the watermark bit is 1

3. otherwise, if n(j, i) = 0, the watermark bit is 0; if n(j, i) = 1, the watermark bit is 1; else the
watermark bit is undefined.

where n(i, j) is the number of vertices between vi and vj which are not connected to vi.

For example, consider our watermarked graph in figure 3.9, in order to extract the watermark we
would have to consider only the colours; the dotted edge information would be unavailable to us in
practise. Between the pair (v0, v4) there is one vertex, v3, which is unconnected to v0; thus the message
bit is 1.

Qu and Potkonjak include two further embedding algorithms: selecting a maximal independent set
(MIS) and adding vertices & edges. They also perform an experimental evaluation to compare the
difficulty of colouring the original graphs vs. watermarked graphs, as well as the quality of the solution.
They chose several graphs, including random and real-life benchmarks to perform the evaluation, and
found that in almost all examples they obtain solutions of the same quality and with no overhead. Qu
and Potkonjak built the first theoretical framework for analysing watermarking techniques and describe
& provide proofs for their techniques.

Myles et al. [124] implemented the QP algorithm using register allocation; they found that a stricter
embedding criteria are required due to the unpredictability of the colouring of vertices and the fact that
one vertex can be used multiple times. Another, major, flaw in the QP algorithm is that it is possible to
insert two different messages into an interference graph and obtained the same watermark graph [174].
The QP algorithm, therefore, is not extractable [173, 175].

68

Figure 3.9: Example interference graph with embedded watermark

69

It has also been shown that the QP graph solution can be modified in such a way that any message
could be extracted [103]. We can clearly see this from our example, figure 3.9: consider the pair (v3, v4);
we can see that we could deduce that a watermark bit 0 is stored in an edge between these vertices.
We know from our embedding that it is not, however it is impossible to tell this without the watermark
edges. Qu and Potkonjak dismiss this problem, claiming that it will be hard to build a meaningful
message particularily if the original message is encrypted by a one-way function [142].

Due to these flaws in the QP algorithm, Myles et al. [124] proposed an improvement which they call
the QPS algorithm.

3.1.3 The QPS Algorithm

The key difference between the QP and the QPS algorithms is the selection of vertices. In the QPS
algorithm triples of vertices are selected such that they are isolated units that will not effect other
vertices in the graph. As watermark bits can only be inserted where there are coloured triples the
data-rate of this algorithm is far lower than the QP algorithm.

Definition 4. Coloured Triple [124]: Given a graph G, a set of three vertices v1, v2, v3 (where v1 < v2 <
v3) is considered a coloured triple if they are vertices in G, are non-adjacent and they are all the same
colour.

Zhu et al. [173] provide clarified versions of the QPS algorithms which eliminate some ambiguities in
the originals ; we use these here and they are shown in algorithms 3 and 4.

Figure 3.10 shows an example graph with a coloured triple {b, c, d}. The embedding algorithm
is described, in pseudocode, in algorithm 3. Figure 3.11 shows the example graph, from figure 3.8,
watermarked with 1012 using the QPS algorithm. It is clear that the data-rate is much smaller than
QPS; we can see that only 3 bits could be embedded using this algorithm.

Figure 3.10: Coloured Triple

70

Algorithm 3 Clarified QPS embedding algo-
rithm

Input: a graph G(V,E), a message M =
m0m1. . .
Output: a graph G′(V ′, E′) with embedded
message M
copy G(V,E) to G′(V ′, E′)
n = |V | - 1
WV = V
j = 0
for all i from 0 to n do

if possible find the nearest two vertices vi1,
vi2 in G′

such that:
vi, vi1, vi2 have the same colour
and are a triple in G’ and vi1, vi2 ∈WV .
WV = WV - {vi1, vi2}
j++
if mj = 0 then

add edge (vi, vi1) to E′

else
add edge (vi, vi2) to E′

end if
end for
return G′(V ′, E′)

Algorithm 4 Clarified QPS extraction algo-
rithm

Input: a graph G′(V ′, E′) with embedded
message M
Output: a message M = m0m1. . .
copy G(V,E) to G′(V ′, E′)
n = |V | - 1
WV = V
j = 0
for all i from 0 to n do

if possible find the nearest two vertices vi1,
vi2 in G′

such that:
vi, vi1, vi2 have the same colour
and are a triple in G’ and vi1, vi2 ∈WV .
WV = WV - {vi1, vi2}
j++
if vi and vi1 have different colours in G′

then
mj = 0
add edge (vi, vi1) to E′

else
mj = 1
add edge (vi, vi2) to E′

end if
end for
return M = m1,m2,. . .mj

Myles et al. implemented the QPS algorithm in Sandmark [26], an open-source tool for the study of
software protection algorithms. They performed a variety of empirical tests to evaluate their algorithm’s
overall effectiveness, examining five properties: credibility, data-rate, stealthiness, part protection and
resilience. The results showed that the QPS algorithm has a very low data-rate and is susceptible to
a variety of simple attacks, such as obfuscations. However, they also conclude that the QPS algorithm
is quite stealthy and is extremely credible. In other words, the watermarks are hard to detect by an
attacker whilst readily detectable by the watermark author.

3.1.4 The QPI Algorithm

The QPS algorithm is an improvement on the QP algorithm, in terms of extractability, however the QPS
algorithm has a very low data-rate. Zhu et al. [173] proposed a further improvement which they call the
QPI algorithm. The QPI algorithm changes the definition of the nearest vertices vi1, vi2 to vi and the
original QP algorithm used cyclic mod n order for numbers 1,2,. . . ,n, while QPI uses 1 < 2 < . . .n.

Definition 5. Two candidate vertices for the QPI algorithm [173]: for a vertex vi of a graph G with
|V | = n and a colouring of G, vi has two candidate vertices vi1 ∈ V and vi2 ∈ V if i < i1 < i2 ≤ n
and vertices vi, vi1, vi2 to vi have the same colour and (vi, vi2) /∈ E; furthermore, ∀j : i < j < i1 and
∀j : i1 < j < i2 ≤ n, vertices vi and vj have a different colour.

The QPI embedding and extraction algorithms (see algorithms 5 and 6) uses a new definition of
candidate vertices, coloured triples and also changes the vertex colours. Figure 3.12 shows the example
interference graph from figure 3.8 with an embedded watermark 10112. The first watermark bit to embed
is 1 and the first vertex is v0; vertex v0 has two candidate vertices v3 and v4 - these are the same colour
and aren’t connected to v0. As with the previous algorithms, we add an edge between v0 and v4 because
v4 is the second candidate vertex and the watermark bit is 1. We then change the colour of v4.

After we change the colour of v2 in the process of embedding the second bit we leave v2 without any
candidate vertices. We therefore skip vertex v2 and move on to the next vertex with candidate vertices.

71

The QPI extraction algorithm requires the original interference graph and the watermarked graph in
order to extract the watermark message. We find the candidate vertices from the original graph, then
compare the colours in the watermarked graph. For example, vertex v0 has two candidate vertices v3

and v4; v3 is the same colour in the original and watermarked graph, whereas v4 is a different colour -
the watermark bit is therefore 1.

The QPI algorithm is an improvement on the QPS algorithm with an increased data-rate and it has
been shown that QPI algorithm is extractable, unlike the original QP algorithm [173].

Algorithm 5 QPI embedding algorithm

Input: a graph G(V,E) and a message M =
m0m1. . .mk

Output: a graph G′ with embedded message
M
n = |V | - 1
G’ = G
j = 0
for all i from 0 to n do

if vi has two candidate vertices vi1, vi2
then

j++
if wj = 0 then

add edge (vi, vi1) in G′

change the colour of vi1 to a different
colour from the current colors used in
G′

else
add edge (vi, vi2) in G′

change the colour of vi2 to a different
colour from the current colors used in
G′

end if
end if

end for
return G’

Algorithm 6 QPI extraction algorithm

Input: an unwatermarked graph G(V,E) and
watermarked graph G′(V ′, E′)
Output: a message M
n = |V | - 1
j = 0
for all i from 0 to n do

if vi has two candidate vertices vi1, vi2 in
G then

j++
if vi and vi1 have different colours in G′

then
mj = 0
add edge (vi, vi1) in G
change the colour of vi1 to a different
colour from the current colors used in
G

else
mj = 1
add edge (vi, vi2) in G
change the colour of vi2 to a different
colour from the current colors used in
G

end if
end if

end for
return M = m0m1. . .mj

3.1.5 The Colour Change Algorithm

The Colour Change (CC) algorithm [104] is another improvement on the QPS algorithm. In the CC
algorithm the colouring function is modified to embed a message, rather than modifying the interference
graph; the modification only occurs for 1 bits but not 0 bits. The data-rate of the CC algorithm is higher
than that of QPS and QPI because each vertex in the interference graph can store 1 watermark bit.

Figure 3.13 shows the example interference graph (from figure 3.8) with the watermark 10110110102

embedded; for clarity, the vertices are annotated with the watermark bits.
The first step in the CC algorithm is to colour the interference graph to obtain the colouring function

γ. We then adapt the colouring function γ to produce a new colouring function γ′ which includes the
embedded watermark (see algorithm 7). For example, the first watermark bit to embed is 1 and the
original colouring of vertex v0 is yellow; we choose the lowest possible legal colour (see table 3.1 for colour
encodings) to replace red. The only vertices which do not change colour are the vertices in which a 0 bit
will be encoded.

In order to extract the watermark, the CC extraction algorithm (see algorithm 8) takes the original
interference graph G and the graph colouring function γ generated by the embedding algorithm. The
original graph colouring γ′ is obtained by colouring G which is then compared with the colours obtained
by γ. If the original colouring of a vertex matches the new colouring then the watermark bit is 1;
otherwise the watermark bit is 0.

72

Figure 3.11: Example interference graph with embedded watermark using the QPS algorithm

Figure 3.12: Example interference graph with embedded watermark using the QPI algorithm

73

Colour Encoding
Yellow 1
Blue 2
Red 3
Green 4

Table 3.1

Figure 3.13: Example interference graph with embedded watermark using the CC algorithm

Table 3.2 shows the output of the original colouring function γ and the new colouring function γ′ for
each of the vertices.

Lee and Kaneko [105] experimentally evaluated their CC algorithm and found that, on average,
it takes 0.75 extra colours to embed a message in an interefence graph. They suggest using the CC
algorithm for programs which contain many variables, as the data-rate is equal to the number of vertices
in the interference graph. They introduce a second algorithm - Color Permutation - for use in programs
which require a large number of registers.

74

Vertex 0 1 2 3 4 5 6 7 8 9
γ 1 2 2 1 1 1 1 2 3 3
γ′ 3 2 4 2 1 2 3 2 1 3

Table 3.2

Algorithm 7 Colour Change embedding algo-
rithm

Input: a graph G(V,E) and a message M =
m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
if n < k then

abort(’embedding failed’)
else
γ = ColourGraph(G)
for j = 0 to n do

if mj = 1 then
find smallest i such that i 6= γ[j] and
i 6= γ[j′] for any (j, j′) ∈ E such that
j′ < j or mj′ = 0
γ[j] = i

end if
end for

end if
return γ

Algorithm 8 Colour Change extraction algo-
rithm

Input: a graph G(V,E), graph colouring
function γ
Output: message M
n = |V | - 1
γ′ = ColourGraph(G)
for j = 0 to n do

if γ[j] = γ′[j] then
mj = 0

else
mj = 1

end if
end for
return M = m0m1. . .mn

3.1.6 The Colour Permutation Algorithm

The Colour Permutation (CP) algorithm [104, 105] uses a similar idea to the CC algorithm, as they both
change the colouring function for an intereference graph to encode the watermark bits. The CP algorithm
converts the watermark bit string into a natural number M , and then chooses the M th permutation of
the lexicographically ordered colours to replace the original colour. The algorithm uses the relationship
between the factorial number system and lexicographically ordered permutations [94, 10] to obtain the
M th permutation.

The encoding algorithm is show in algorithm 9. The published extraction algorithm is incorrect and
we provide a corrected version here (algorithm 10).

The data rate of the CP algorithm is proportional to the number of colours c, given by log2c!, whereas
the data rate of the CC algorithm is equal to the number of variables used. We can therefore only store
two watermark bits in our example interefence graph (figure 3.8) as it contains 3 colours (log23! = 2).

Figure 3.14 shows the example interference graph after encoding 102 with the CP algorithm. The
embedding algorithm first converts 102 into the natural number 1; and then converts this to the factoradic
{1, 0, 0} and obtains the corresponding permutation {2, 1, 3}. The new colour permutation is applied to
the original interference graph, so that yellow and blue colours are swapped.

To extract the embedded watermark we perform the opposite of the embedding algorithm (see al-
gorithm 10). First the factoradic {1, 0, 0} is obtained by comparing the original colouring and the new
colouring which is then converted to the original natural number.

Table 3.3 shows the output of the original colouring function γ and the new colouring function γ′

obtained using the CP algorithm.
Lee and Kaneko [105] experimentally evaluated their CP algorithm and found that the embedded

watermark is stealthy and has a high credibility but low-resilience to semantics-preserving attacks.
The CP algorithm has the advantage that it will never introduce a new register; however, this means

that the program must already use a large amount of registers in order to embed a large message. The

75

Figure 3.14: Example interference graph with embedded watermark using the CP algorithm

Vertex 0 1 2 3 4 5 6 7 8 9
γ 1 2 2 1 1 1 1 2 3 3
γ′ 2 1 1 2 2 2 2 1 3 3

Table 3.3

CC and CP algorithms cannot embed a watermark consisting of all zeros.

3.1.7 The Selected Colour Change Algorithm

Li et al. [107] proposed a more efficient algorithm based on the CC algorithm which they call Selected
Colour Change (SCC). The SCC algorithm is very similar to the CC algorithm, however, the efficiency
increase is obtained by only changing the colours of either the 1 or the 0 bits, but not both. If the
occurance of 0 bits is higher than 1 bits in the watermark then 0 bits are changed; otherwise 1 bits are
changed. The choice of which bits are changed is stored in a virtual vertex v−1 to allow the embedding
algorithm to extract the watermark.

Figure 3.15 shows the example intereference graph (from figure 3.8) using the SCC algorithm 11
to embed the watermark 10110110102. We change the colouring function for the 0 bits because the
watermark string contains four 0 bits and six 1 bits; we also set the virtual node v−1 to 0 to inform the
extraction algorithm of this. We change the colouring function in the same manner as the CC algorithm;
that is, we choose the lowest possible legal colour as the replacement.

For example, the first bit to embed is 1 therefore we do not change the colouring function for vertex
v0. However, the next bit is a 0 therefore we so we change the colouring function to output a different
colour for v1. We choose red because v1 is connected to two yellow vertices and v1 is already blue (see
table 3.1 for colour encodings). Table 3.4 shows the output of the original colouring function γ and the
new colouring function γ′ obtained using the CP algorithm.

In order to extract the watermark we observe the value of the virtual vertex v−1. If γ[−1] = 0 then
we assign a 1 to each watermark bit mj where the original colouring for a vertex j matches the new
colouring and a 0 bit if they differ. Otherwise, if γ[−1] = 1 then we assign a 0 to each watermark
bit where the original colouring for a vertex matches the new colouring and a 1 bit if they differ (see
algorithm 12).

76

Figure 3.15: Example interference graph with embedded watermark using the SCC algorithm

Vertex -1 0 1 2 3 4 5 6 7 8 9
γ null 1 2 2 1 1 1 1 2 3 3
γ′ 0 2 1 1 2 2 2 2 1 3 3

Table 3.4

In our example gamma[−1] = 0 so we assign a 1 to each watermark bit mj where the original
colouring for a vertex j matches the new colouring and a 0 bit where they differ.

Li et al. [107] evaluate their SCC algorithm and compare the results to the QP, QPS and CC
algorithms. They conclude that their SCC algorithm is equivilent to the CC algorithm in many ways,
including data-rate, stealthiness and cost. They suggest the SCC algorithm is more efficient than the
CC algorithm because it doesn’t change all the colours in the interference graph; however, it is not clear
how much the efficiency increase affects watermark embedding in real-world programs.

77

Algorithm 9 Colour Permutation embedding
algorithm

Input: a graph G(V,E), a message M =
m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
M = Σk

i=0mi2
i

γ = GraphColouring(G)
c = max(γ[0], γ[1], . . . , γ[n])
k′ = [log2c!]
if k′ < k then

abort(’embedding failed’)
end if
for all j = 1 to c do
r[j] = M mod (c− j + 1)
M = M ÷ (c− j + 1)

end for
for all h = 1 to c do
u[h] = false

end for
for all j = 1 to c do
cnt = 0
for all h = 1 to c do

if u[h] 6= true then
if cnt = r[j] then
u[h] = true
p[j] = h
break

else
cnt = cnt + 1

end if
end if

end for
end for
for all j = 0 to n do
γ[j] = p[γ[j]]

end for
return γ

Algorithm 10 Corrected Colour Permutation
extraction algorithm

Input: a graph G(V,E), graph colouring γ
Output: a message M = m0m1. . .mk
n = |V | - 1
γ′ = ColourGraph(G)
c = max(γ[0], γ[1], . . . , γ[n])
for all i = 1 to c do
p[γ′[i]] = γ[i]

end for
for all i = 1 to c do
u[i] = false

end for
for all i = 1 to c do
cnt = 0
for all j = 1 to c do

if u[j] 6= true then
if j = p[i] then
r[i] = cnt
u[j] = true
break

end if
cnt = cnt+ 1

end if
end for

end for
I = 0
for all j = 1 to c do
I = I × j + r[c− j + 1]

end for
M = “”
while I > 0 do
M = M + (I mod 2)
I = I ÷ 2

end while
return M

78

Algorithm 11 Selected Colour Change em-
bedding algorithm

Input: a graph G(V,E) and a message M =
m0m1. . .mk

Output: a colouring function γ
n = |V | - 1
if n < k then

abort(’embedding failed’)
else
n0 = number of 0 bits in M
n1 = number of 1 bits in M
γ = ColourGraph(G)
if n0 < n1 then
γ[−1] = 0
for j = 0 to n do

if mj = 0 then
find smallest i such that i 6= γ[j]
and i 6= γ[j′] for any (j, j′) ∈ E
such that j′ < j or mj′ = 1
γ[j] = i

end if
end for

else
γ[−1] = 1
for j = 0 to n do

if mj = 1 then
find smallest i such that i 6= γ[j]
and i 6= γ[j′] for any (j, j′) ∈ E
such that j′ < j or mj′ = 0
γ[j] = i

end if
end for

end if
end if
return γ

Algorithm 12 Selected Colour Change extrac-
tion algorithm

Input: a graph G(V,E), graph colouring
function γ
Output: message M
n = |V | - 1
γ′ = ColourGraph(G)
if γ[−1] = 0 then

for j = 0 to n do
if γ[j] = γ′[j] then
mj = 1

else
mj = 0

end if
end for

end if
if γ[−1] = 1 then

for j = 0 to n do
if γ[j] = γ′[j] then
mj = 1

else
mj = 0

end if
end for

end if
return M = m0m1. . .mn

3.1.8 Fingerprinting via Register Allocation

Qu et al. [143] proposed a modification to the QP algorithm for fingerprinting. Fingerprinting is a class
of watermarking which embeds a unique identifier into each copy of the software (or music, or films, etc)
which allows the origin of the stolen intellectual property to be identified.

The generic approach proposed is to generate n solutions to a graph colouring problem and assign
a given solution to one customer only. This approach guarantees that each customer will be able to be
uniquely identified by the register allocation generated by their unique inteference graph colouring.

3.1.9 QP Algorithms and Public-Key Cryptography

It is advisable to encrypt the watermark message before embedding to prevent an adversery from ex-
tracting a watermark, even if they know the extraction algorithm. For example, if an adversery obtains a
program which they know contains a watermark embedding with the QPS algorithm they can simply run
the QPS extraction algorithm and obtain the watermark; they could then claim that they inserted the
watermark. Jian et al. [86] propose a technique based on a combination of RSA public-key encryption
[148] and the QPI algorithm [173]. Simply, they suggest that the watermark bit string is encrypted before
being embedded. If an adversery extracts the encrypted watermark they will not be able to decipher it,
if the encryption is strong enough.

79

3.1.10 Conclusion

The QP algorithm has been shown to be unextractable [174] and an implementation of the QPS algorithm
has shown that the algorithm has a low data-rate [75] and is highly suspceptible to semantics-preserving
transformation attacks [124]. Any other register allocation based software watermarking algorithm will
also be susceptible to semantics-preserving transformations. More specifically, any transformation which
alters the interference graph or register allocation will easily remove a watermark.

Register allocation based algorithms maybe be stealthy [124], as they do not add any extra code, but
we do not recommended them for protecting software due to their low-resilience to attacks. However,
academic research continues in this area with the latest register allocation based approach [107] published
this year.

We believe that further research should instead focus on dynamic software watermarking techniques
which, in theory, should be resilient to semantics-preserving transformations; thus providing a robust
technique for the protection of software.

80

3.2 Code Re-Ordering Watermarks

intro

3.2.1 Basic Block Re-Ordering

Davidson and Myhrvold [44] proposed one of the first software watermarking algorithms which encodes
the watermark by basic block re-ordering. The embedding algorithm was described in a patent issued
to Microsoft but the extraction algorithm was not discussed. Collberg et al. [126] proposed a method of
watermark extraction and implemented the DM algorithm in Sandmark [26].

Definition 6. Basic Block [4]: A basic block is a sequence of consecutive statements in which the flow
of control enters at the beginning and leaves at the end without halt or possibility of branching except at
the end.

Collberg et al.’s extraction algorithm is an informed extraction algorithm; that is, it requires the
original P and the watermarked program Pw to extract the watermark w. The embedding algorithm
re-orders only unique basic blocks in all methods as there is no way of knowing which method(s) the
watermark is stored in. This would result in the extraction of many watermarks; Collberg et al. overcome
this in their implementation by prefixing and suffixing magic numbers to the watermark to guarantee
recognition.

Definition 7. Unique Basic Block [126]: A basic block is unique if and only if no other block in the
graph contains the same instructions.

Non-unique basic blocks can be made unique by inserting bogus code (such as no op instructions)
until all the basic blocks are unique [27].

The first step in the DM algorithm is to convert the watermark into a number w; then the wth

permutation [93] of a set of basic blocks B is generated. The permutated basic blocks B′ are re-linked
to retain the original program semantics and B is replaced by B′ to produce the watermarked program
P ′.

To extract a watermark the first step is to compare the ordering of the original basic blocks against the
new ordering, to obtain the permutation number; this number is then converted back into the watermark
number.

A program method containing n unique basic blocks can embed [log2n!] watermark bits. The method
should not contain exception handling code as this can impose an ordering of basic blocks which is
difficult or impossible to alter [126].

Figure 3.16(a) shows a linearised control flow graph1 [4] for the Java bubble sort program in listing
3.3. The program method contains 7 unique basic blocks (excluding begin and end) which means that Correct?

this method can store 12 bits.
Figure 3.16(b) shows the control flow graph after embedding the watermark 10110110102 (73010).

The linearised set of basic blocks for the control flow graph is B = {B0, B1, B2, B3, B4, B5, B6} of which
the 730th permutation is B′ = {B1, B0, B2, B4, B6, B3, B5}. The blocks in B′ are relinked to retain the
original control flow order by inserting additional goto statements where neccesary, for example at the
end of B0.

Hattanda et al. [78] evaluated the DM watermarking algorithm by watermarking several C programs
and analysing metrics such as program size and program performance. In their implementation they
found that the size increase of a watermarked program was between 9% and 24% while the performance
was 86% to 102% of the original program. The 2% performance increase was due to the re-ordered code
containing no redundant jump instructions, and that it showed more locality than the original - greater
locality increases performance and increasing locality is a common optimisation performed by compilers
[45].

Hattanda et al. reported a data-rate of approximately 0.2% of program size (in bytes) based on their
implementation that used a partial permutation scheme, which only used 6 basic blocks. Collberg et

does it?
what is a
partial per-
mutation?

al.’s implementation was not constrained in this way and the data rate is dependent on the number of
basic blocks in program methods.

1The code shown is Jimple [144] - a 3-address-code intermediate representation for Java bytecode, used by the Soot
optimiser [164]

81

Listing 3.3: Bubble Sort in Java

public static void bubbleSort(int[] arr) {
boolean swapped = true;
int j = 0;
int tmp;
do {

swapped = false;
j++;
for (int i = 0; i < arr.length - j; i++) {

if (arr[i] > arr[i + 1]) {
tmp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = tmp;
swapped = true;

}
}

} while(swapped);
}

Algorithm 13 DM embedding algorithm

Input: a program P , a watermark number w
Output: a watermarked program Pw

G = CFG of a function in P
optimise and ensure unique blocks in G
linearise G as B = {B0, B1, . . . Bn}
if w ≥ n! then

abort(’watermark too big’)
else
Bw = wth permutation of B
add branches to Bw where necessary to ensure semantic equivalence with B
Gw = Bw replace B
Pw = Gw replace G
return Pw

end if

82

end

begin

B4:
i1 = i1 + 1;

B5:
$i9 = lengthof r0;
$i10 = $i9 - i0;
if i1 < $i10 goto B2;

B6:
if z0 ! = 0 goto B1;

B0:
int[] r0;
boolean z0;
int i0, i1, i2, $i3, $i4, $i5;
int $i6, $i7, $i8, $i9, $i10;
r0 := @parameter0: int[];
i0 = 0;

B1:
z0 = 0;
i0 = i0 + 1;
i1 = 0;
goto B5;

B2:
$i3 = r0[i1];
$i4 = i1 + 1;
$i5 = r0[$i4];
if $i3 <= $i5 goto B4;

B3:
i2 = r0[i1];
$i6 = i1 + 1;
$i7 = r0[$i6];
r0[i1] = $i7;
$i8 = i1 + 1;
r0[$i8] = i2;
z0 = 1;

(a) before wm

end

begin
goto B0;

B4:
i1 = i1 + 1;
goto B5;

B5:
$i9 = lengthof r0;
$i10 = $i9 - i0;
if i1 < $i10 goto B2;
goto B6;

B6:
if z0 ! = 0 goto B1;
goto end;

B0:
int[] r0;
boolean z0;
int i0, i1, i2, $i3, $i4, $i5;
int $i6, $i7, $i8, $i9, $i10;
r0 := @parameter0: int[];
i0 = 0;
goto B1;

B1:
z0 = 0;
i0 = i0 + 1;
i1 = 0;
goto B5;

B2:
$i3 = r0[i1];
$i4 = i1 + 1;
$i5 = r0[$i4];
if $i3 <= $i5 goto B4;
goto B3;

B3:
i2 = r0[i1];
$i6 = i1 + 1;
$i7 = r0[$i6];
r0[i1] = $i7;
$i8 = i1 + 1;
r0[$i8] = i2;
z0 = 1;
goto B4;

(b) after wm

Figure 3.16: Linearised Control Flow Graphs for the Java Bubble Sort program, listing 3.3

83

The DM algorithm is highly unstealthy due to the fact that a normal compiler would not linearise
the control flow graph as in DM watermarked programs [27]. A simple way to discover a DM watermark
is to examine the ratio of goto statements to the total number of instructions - programs with the DM
watermark show a high ratio compared to an unwatermarked program [126] (you can clearly see the
difference in the number of goto statements in figure 3.16).

The biggest flaw with the DM watermark is that it is highly fragile; that is, it is not resilient
to semantics-preserving transformations. For example, any transformation which re-ordered the basic
blocks would eliminate the watermark [75].

Anckaert et al. [7] implemented and evaluated a version of the DM watermarking algorithm for ma-
chine code where groups of chains of basic blocks are re-ordered. They concluded that their watermarking
algorithm is stealthier as it has a minimal affect on code locality.

Definition 8. Basic Block Chain [8]: A set of basic blocks that must be placed consecutively.

Not sure
exactly
what this
means.

3.2.2 Equation Re-Ordering

Shirali-Shahrez et al. [153] proposed a software watermark scheme based the re-ordering of operations
in mathematical equations. The idea involves re-ordering symmetric mathematical operations, such as
addition, to preserve program semantics.

For example, equation 3.1 and equation 3.2 are equivalent and we could consider a 0 bit encoding for
the first ordering, and a 1 bit encoding for the second ordering.

x = y + z (3.1)

x = z + y (3.2)

Not all operations are symmetric and the watermarking algorithm only re-orders safe swappable
binary operations to ensure the watermarked equation is equivalent.

Definition 9. Safe swappable operation [153]: An operation is safe swappable if it is symmetric and at
least one of it’s operands is constant.

In order to produce a blind watermarking extraction algorithm an ordering is defined on the operands
of a safe swappable operation:

1. If both operands are constant they are ordered according to their string representation.

2. If one operand is constant and the other is not then the constant operand would come first.

The sorted order of operands is retained to encode a 0 bit whereas the operands are reversed to
encode a 1 bit. The extraction algorithm can then check to see if operands are in sorted order or not, to
obtain 0 or 1.

Equation 3.3 contains 3 safe swappable operations: 5× y, x+ 1 and 2× (x+ 1).

5× y + 2× (x+ 1) (3.3)

Of these 3 operations x+ 1 is unordered according to the ordering definition; therefore the equation
must be re-ordered as (3.4) before watermarking.

5× y + 2× (1 + x) (3.4)

In order to encode a watermark we perform a pre-order traversal of the equation tree (see figure
3.17), swapping operations where necessary to encode bits. For example to encode the watermark 0112

we leave the order of 5× y and change the order of 2× (1 + x) and 1 + x, giving us equation 3.5.

5× y + (x+ 1)× 2 (3.5)

The data-rate of this watermarking technique is related to the number of safe-swappable operations
within a program. It is likely that there will be many, but the watermark will probably need to be split
into pieces as most equations will only encode a small number of bits individually.

84

×

× ×

1

+

25 y

x

Figure 3.17: Equation tree for equation 3.4

Zonglu et al. [152] proposed a very similar technique using a re-ordering based on operand coefficients.
Neither of these techniques cannot be applied to source-code as the compiler itself may re-order the
operands and even when applied to bytecode or machine code this technique is highly susceptible to
semantics-preserving transformations. Any re-ordering of the operands after watermarking will remove
the watermark.

3.2.3 Function Re-Ordering

Gupta and Pieprzyk [70] introduced a watermarking scheme for C/C++ by imposing an ordering on the
mutually independent functions by introducing bogus dependencies.

not sure
about this
one. add
bogus func-
tion calls.
requires re-
ordering of
functions.
to extract
look at the
function
ordering.
goes under
graph wa-
termarking?
opaque
predicate
algorithms?

3.2.4 Constant Pool Re-Ordering

Gong et al. [65] proposed a watermarking scheme, CPW, for Java based on the ordering of a class file’s
constant pool.

A Java compiler compiles Java source code into intermediate Java Byte Code in files ending with the
extension .class.

Java class files are divided into 10 areas:

Magic Number
0xCAFEBABE

Version Numbers
The minor and major versions of the class file

Constant Pool
Pool of constants for the class

Access Flags
e.g. abstract, static, etc

This Class
The name of the current class

Super Class
The name of the super class

Interfaces
Any interfaces in the class

85

Figure 3.18: Conceptual Java class file diagram, showing constant pool before and after watermarking.

Fields
Any fields in the class

Methods
Any methods in the class

Attributes
Any attributes of the class

The constant pool is an array of variable length elements containing every constant used in the Java
class [168]. Constants are referenced by an index throughout the bytecode. Some entries in the constant
pool are direct references to a constant while other entries are references to other members in the constant
pool - these are indirect constants. Each constant in the pool is preceded by a tag denoting it’s type, for
example class, integer, Utf8 [108].

The CPW scheme involves re-ordering the direct constants corresponding to the W th permutation of
the direct constants where W is an integer watermark.

Figure 3.18 shows a conceptual diagram of listing 3.4; the constant pool is shown before and after wa-
termarking. The set of direct constantsD before watermarking isD = {7, 8, 9, 10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28}.

If we want to embed the watermark 10110110102 (73010) we first obtain the 730th permutation of
D; this is D′ = {7, 8, 9, 10, 11, 12, 13, 14, 18, 21, 23, 22, 24, 26, 28, 25, 27}. Figure 3.18 shows the constant
pool after watermarking, on the right, where the direct constants have been re-numbered according to
the permutation.

To extract the watermark we calculate the original ordering of the direct constants (in the same
way as the original Java compiler did) and compare with the watermarked constant pool to find the
permutation number W .

Gong et al. evaluated their algorithm by embedding watermarks into 4000 random class files down-
loading from the Internet and concluded that it has a good robustness but small capacity. However,
the CPW algorithm is far from robust - any further re-ordering of the constant pool would destroy the
watermark.

86

Listing 3.4: Hello World in Java

public class HelloWorld {
public static void main(String [] args) {

System.out.println("Hello World");
}

}

3.2.5 Conclusion

We have presented a survey of software watermarking schemes based on code re-ordering. This family
of watermarks are highly susceptible to semantics-preserving transformation attacks [75], and can be
unstealthy. The DM watermark is highly unstealthy due to addition of large numbers to goto statements
inserted to preserve the original control-flow after re-ordering.

Any further re-ordering of a program watermarked with any of the presented algorithms will likely
destroy the watermark. In fact, even re-watermarking the program will likely destroy the watermark.

Academic research continues in this area, with the latest paper published last year [152]. We believe
that further research should instead focus on dynamic software watermarking techniques which, in theory,
should be resilient to semantics-preserving transformations; thus providing a robust technique for the
protection of software.

3.3 Graph Watermarking

3.3.1 Encoding Watermarks in Graphs

Collberg et al. [33] describe several techniques for encoding watermark integers in graph structures. The
algorithms in this paper rely on the fact that graph-generating code is difficult to analyse due to aliasing
effects [64] which, in general, is known to be un-decidable [145].

An ideal class of watermarking graph should have the following properties [37]:

• ability to efficiently encode a watermark integer; and be efficiently decodable to a watermark integer

• a root node from which all other nodes are reachable

• a high data-rate

• a low outdegree to resemble common data structures such as lists and trees

• error correcting properties to allow detection after transformation attacks

• tamper-proofing abilities

• have some computationally feasible algorithms for graph isomorphism, for use during recognition

Graph Enumeration

The family of graph encoding is based on a branch of graph theory known as graphical enumerations
[77]. An integer watermark n is encoded as the nth enumeration of a given graph.

Directed Parent-Pointer Trees

subsubsubsetcion?!

This family of graphs contains a single edge between a vertex and it’s parent. For example, there are
4 possible enumerations of DPPTs having four indistinguishable vertices [93], as shown in figure 3.19.
We choose the nth enumerated graph to embed the watermark number n.

how is it
ordered?

Implementing a parent-pointer tree data-structure is space efficient because each node has just one
pointer field referencing it’s parent. However, the data-structure is fragile and an adversary could add a
single node or edge to distort the watermark.

87

(a) (b) (c) (d)

Figure 3.19: Enumerations of a directed graph with 4 indistinguishable vertices.

Figure 3.20: Planted Planar Cubic Tree

Planted Planar Cubic Trees

subsubsubsection!?

Planted planar cubic trees (PPCT) are binary trees where every interior vertex, except the root, has
two children (see figure 3.20). These are easily enumerated by using a Catalan recurrence [18, 95]. Figure
3.22 shows PPCT enumerations with 1 to 4 leaves; the Catalan number c(n) gives the number of unique
trees for each n. An integer is encoded as one of the trees, for example, a 0 could be encoded as any of
the trees in the first column.

The Catalan number is given by the formula:

c(n) =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
for n ≥ 0 (3.6)

PPCTs can be made more resilient to attacks by a) marking each leaf with a self-pointer, and b)
creating an outer cycle from the root to itself through all the leaves [27] (see figure 3.21). This allows
single edge and node insertions to be detected; however, multiple changes cannot be detected or corrected.
The PPCT graphs have a lower bit-rate than other graph families but are more resilient to attacks.

Radix Graphs

Radix graphs add an extra pointer field in each vertex of a circular linked list of length k to encode a
base-k digit. It is possible to encode watermark digits where a self-pointer represents 0, a pointer to the
next node 1, and so on. Figure 3.23 shows the radix-5 expansion of 36510 (24305) encoded in a linked
list structure.

These graphs give the highest data-rate for encoding watermarks however they are fragile as the
watermark could easily be distorted. We can add redundancy to these watermarks by restricting the
indegree to two and outdegree to two and using a permutation graph [33].

Several papers [21, 139, 171, 170, 87, 172] describe a technique which combines radix graphs with the
error-correcting properties of PPCTs by converting a radix graph into a PPCT-like structure.

88

Figure 3.21: Enhanced Planted Planar Cubic Tree, with leaf self-pointers (dotted) and an outer cycle
(dashed).

C
(0

)
=

1

0

C
(1

)
=

1

0

C
(2

)
=

2

0 1

C
(3

)
=

5

0 1 2 3 4

Figure 3.22: Enumerations of PPCTs with 1 to 4 leaves, showing the index below.

89

0× 54 0× 50

3× 51

4× 52

2× 53

Figure 3.23: Radix-5 expansion of the watermark 365. The spine is black and edges representing radix-k
are dotted.

Permutation Graphs

Permutation based graphs (as defined by Collberg et al. [33]) use the same basic singly linked circular list

different
from
wikipedia
& Spinrad
[158]structure as the radix graphs but have error-correcting properties. In this encoding scheme a permutation

P = {p1, p2, . . . , pn} is derived from the watermark integer n; the permutation is then encoded in the
graph by adding edges between vertices i and pi.

Collberg and Nagra [27] give algorithms for encoding and decoding an integer as a permutation, shown
here as algorithm 14 and 15. For example, the integer 9710 is encoded as the permutation {3, 1, 0, 2, 4}
according to algorithm 14. We then encode this in a graph as shown in figure 3.24.

If an adversary changes one of the non-spine pointers to point to a different vertex we will discover
an error because the permutation graph encodes a unique permutation - each vertex must have indegree
two. However, if the adversary swaps two pointers we will lose the watermark.

Algorithm 14 int2perm [27]

Input: integer V , length of permutation len
Output: permutation encoding of V
perm = (0, 1, 2, . . . , len− 1)
for r = 2; r < len; r + + do

swap perm[r − 1] and perm[V mod r]
V = V ÷ r

end for
return perm

Reducible Permutation Graphs

Reducible permutation graphs (RPG) [167, 166] are very similar to permutation graphs but they closely
resemble control-flow graphs as they are reducible-flow graphs [81, 80].

Definition 10. Reducible flow graph [4]: A flow graph G is reducible if and only if we can partition
the edges into two disjoint groups, often called forward edges and back edges, with the following two
properties:

1. The forward edges from an acyclic graph in which every node can be reached from the intial node
of G.

2. The back edges consist only of edges whose heads dominate their tails

90

Algorithm 15 perm2int [27]

Input: a permutation perm
Output: encoded integer V
V = 0
f = 0
for r = length(perm); r ≥ 2; r −− do

for s = 0; s < r; s+ + do
if perm[s] == r − 1 then
f = s
break

end if
end for
swap perm[r − 1] and perm[f]
V = f + r × V

end for
return V

10 32 4

Figure 3.24: Permutation graph encoding the integer 9710 using algorithm 14 to generate the permutation
{3, 1, 0, 2, 4}.

91

Listing 3.5: Example Java Method - Sum

public static void sum(int[] numbers) {
int total = 0;

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero :(");

}else{
System.out.println("total is " + total);

}
}

Listing 3.6: Example Static Graph Watermark Method - Sum

public static boolean wm(int i) {
if(i < 0)

return true;
else

return false;
}

The reducibility of this family of graphs means that they resemble control-flow graphs constructed
from programming constructs such as if, while etc. [27].

RPGs, like CFGs, contain a unique entry node and a unique exit node, a preamble which contains
zero or more nodes from which all other nodes can be reached and a body which encodes a watermarking
using a self-inverting permutation [22].

Definition 11. Inverse permutation [22]: an inverse permutation of {p0, p1, . . . , pn} is the permutation
{q0, q1, . . . , qn} where qpi = pqi = i. hmm...

Definition 12. Self-inverting permutation [22]: a permutation that is it’s own inverse, i.e. Ppi = i.

For example, the following permutationQ = {0, 5, 2, 10, 4, 1, 9, 7, 8, 6, 3} is a self-inverting permutation
of P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

This family of graphs is resistant to edge-flip attacks, where an attacker inverts the condition of
conditional jumps in a program.

draw graph
example

3.3.2 Static Graph Watermarking

Venkatesan et al. [167] proposed the first static graph watermarking scheme, Graph Theoretic Water-
marking (GTW), which encodes a value in the topology of a program’s control-flow graph [4]. The idea
was later patented by Venkatesan and Vazirani [166] for Microsoft. The basic concept is to encode a
watermark value in a reducible permutation graph and convert it into a control flow graph; it is then
merged with the program control flow graph by adding control flow edges between the two.

Figure 3.25(a) shows the control flow graph for the Java method in listing 3.5 and figure 3.25(b)
shows our watermark graph - this graph encodes our watermark (it’s not important, for this example,
what the watermark is; just that 3.25(b) encodes our watermark).

The watermark graph in figure 3.25(b) is also the control flow graph for the Java method in listing
3.6 - we embed our watermark graph in a program by converting a graph watermark into a control flow
graph using programming constructs from the programming language we are using.

The watermark control flow graph can be integrated with the original program control flow graph as
shown in figure 3.25(c) and code listing 3.7.

The algorithm adds bogus control flow edges between random pairs of vertices in the program CFG
and watermark CFG in order to protect against static analysis attacks looking for sparse-cuts [11] in
the control-flow graph. A sparse-cut would indicate a possible joining point of the original program

92

Listing 3.7: Example Static Graph Watermark Java Method - Sum

public static void sum(int[] numbers) {
int total = 0;
wm(total);
for(int i = 0; i < numbers.length; i++) {

total += numbers[i];
}

if(total < 0) {
System.out.println("total is less than zero :(");

}else{
System.out.println("total is " + total);

}
}

public static boolean wm(int i) {
if(i < 0)

return true;
else

return false;
}

B0

B1

B3B2

B5B4

(a) P

W3W2

W1

W0

(b) W

B1

B0

B3B2

W3W2

W1

W0

B5B4

(c) PW

Figure 3.25: Graph theoretic watermarking

93

Listing 3.8: Example Dynamic Graph Watermarked Java Method - Sum

class Node { public List <Node > children = new ArrayList <Node >(); }

public static void sum(int[] numbers) {
int total = 0;

if(numbers.length > 5) {
Node root = new Node();
Node n1 = new Node();
root.children.add(n1);
Node n2 = new Node();
Node n3 = new Node();
n1.children.add(n2);
n1.children.add(n3);

}

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero :(");

}else{
System.out.println("total is " + total);

}
}

CFG and the watermark CFG where the attacker could split the program with as few edges broken as
possible. For example, we could insert a call to the sum, or any other method in the original program,
in the watermark method. The GTW algorithm also inserts bogus method calls in between parts of
the original program so that the location of bogus calls cannot be used to point out the location of the
watermark.

In order to recognise a GTW we must know which basic blocks, from the program’s CFG, are part
of the watermark graph; we must therefore mark the watermark basic blocks in some way in order to
identify them. We could, for example, re-order instructions such that they are in lexicographic order,
or insert bogus instructions to identify a watermark basic block [27]. However, these techniques are not
resilient to semantics-preserving transformations and an attacker could remove the marks so that we
cannot mark our watermark blocks.

Collberg et al. [24] implemented a version GTWSM of GTW in Sandmark [26] in order to evaluate
the algorithm. They measured the size and time overhead of watermarking and evaluated the algorithm
against a variety of attacks. They also introduce two methods (Partial Sum splitting and Generalised
Chinese Remainder Theorem [102] splitting) for splitting a watermark integer into redundant pieces so
that a large integer can be stored in several smaller CFGs. They found that stealth is a big problem; for
example, the basic blocks of the generated watermark method consisted of 20% arithmetic instructions
compared to just 1% for standard Java methods [35]. Watermarks of up to 150 bits increased program
size by between 40% and 75%, while performance decreased by between 0% and 36% [24].

3.3.3 Dynamic Graph Watermarking

Collberg and Thomborson [30] proposed the first dynamic graph based watermarking scheme CT to
overcome problems with static watermarking schemes; most notably, static watermarks are highly fragile
and therefore susceptible to semantics-preserving transformation attacks [75].

Dynamic graph watermarking schemes are similar to static graph watermarking except the graph
structures are built at run-time. CT can use any of the previously described graph encoding schemes to
store the watermark.

Figure 3.8 demonstrates how we could, trivially, embed our example watermark graph from figure
3.25(b) dynamically into the example Java program from listing 3.5. We only execute the watermark
code when the numbers array is longer than 5 - this serves as our secret input. We would inspect the
Java heap to retrieve our watermark when the program is executed with the secret input.

The first implementation [135] of the CT algorithm CTJW , implemented in a system called JavaWizz
[134], was for Java bytecode using PPCT graphs to encode the watermark integer. A class is chosen

94

Listing 3.9: CT watermark implementation.

class A {

A() {
....

}
....

}

class A1 extends A {

A1() {
super();
// graph building
// code goes here

}

}

from the program to be watermarked and converted into a node class by adding additional fields which
contain references to other nodes.

The graph building code is including in the program by sub-classing a class and putting the graph
building code in it’s constructor. For example, in listing 3.9 the class A1 is a sub-class of A; to build the
graph an execution of new A() only has to be replaced by new A1().

Palsberg et al. [135] discuss a simple implementation which only resists attacks against dead-code
removal; they suggest that other software protection techniques are applied after the program has been
watermarked. Dependencies are added between the watermark generating code and the original program
by replacing a statement S with a statement of the form if(x 6= y) S where x and y are distinct nodes
in the watermark graph.

In order to retrieve the watermark, the watermarked program is executed and the Java heap is
accessed by dumping an image using the -Xhprof heap profiling JVM option [133].

The following steps are performed to retrieve the watermark:

1. Extracting potential node classes

2. Exracting potential node objects

3. Determining potential edges

4. Searching for the watermark graph

In general, searching for the graph would be an NP-complete problem however we know that the
graph is a PPCT graph of a certain size and can prune away unnecessary nodes. Palsberg et al. [135]
evaluated their implementation and found that, although it is possibly to retrieve a watermark, it is
time-consuming — taking from 0.6 minutes up to 8.9 minutes on their set of test programs. It was
shown that the CT algorithm is a good watermarking scheme because it is stealthy and resilient to
semantics-preserving transformation attacks but it must be combined with other software protection
techniques such as obfuscation [31] and tamper-proofing [36].

Collberg and Thomborson [37] implemented a version of the CT algorithm, CTSM , in Sandmark [26]
and compared it to JavaWiz [134]. The CTSM implementation differs from the JavaWiz in the following
ways:

• CTSM requires a key to encode and decode the watermark, requiring user annotation of the program
to be watermarked

• CTSM can encode arbitrary strings whereas CTJW requires an integer watermark

• CTJW uses PPCTs to encode the watermark, whereas CTSM offers the choice of Radix, PPCT,
Permutation or Reducible Permutation graphs; also offering a cycled graph option to protect against
node-splitting attacks.

95

• CTJW ’s graph building code is concentrated in one location whereas CTSM embeds code fragments
at sereval user-specified locations

• CTJW uses an existing class for graph nodes whereas CTSW generates its own

• CTJW uses the heap profiling option of the JVM whereas CTSM uses the Java Debug Inteferace
(JDI) API [161]

The CTSW algorithm embedding algorithm consists of the following steps:

Annotation
In this first step the programmer must insert calls to a method mark() which indicates to the wa-
termarking system locations in which graph building code can be inserted. This manual annotation
step allows a programmer to carefully choose the best locations for code insertion, maximising the
stealthiness of the embedded watermark.

Tracing
After the code has been annotated the program is run with a secret input during which one or
more annotation points will be encountered. Some of these encountered locations are used to store
the graph building code.

Embedding
The watermark is encoded in a graph structure (strings watermarks are first converted to integers)
and is converted into Java bytecode that builds the graph. The graph node class is generated from
a similar class already in the program, or if no suitable class is found, classes from the Java library,
such as LinkedList could be used. The graph is partitioned into several, equal sized, sub-graphs
so that the code is more stealthy and the code is inserted at the marked locations discovered in
the tracing step.

During extraction the program is run with the secret input; this will invoke the graph building code
at the locations marked by the programmer. The graph structure will be on the Java heap and the Java
debugging interface is used to retrieve it. The JDI is used to add breakpoints to every constructor in the
program to build a circular linked buffer of the last 1000 objects allocated. The list is then searched, in
reverse, for the watermark graph.

Collberg and Thomborson [37] evaluate CTSM and conclude that it is efficient and resilient to
semantics-preserving transformations. The greatest vulnerability is it’s limited stealthiness and it is
suggest that future work investigates combining a locally stealthy but not steganographically stealthy
technique, such as describe by Nagra and Thomborson [130], with the CT algorithm would be helpful.

3.3.4 Attacks against graph watermarks

Collberg et al. [37] describe 4 types of attacks against dynamic graph watermarking schemes:

1. adding extra graph edges

2. adding extra nodes to the graph

3. renaming and re-ordering instance variables

4. splitting nodes into several linked parts

However, an adversary will probably not know the location of the watermark in a large program
and as such would have to apply transformations across the program resulting in a large performance
decrease. The use of RPG or PPCT graphs prevent renaming and re-ordering attacks because these
graph encodings do not rely on the order of the nodes.

The biggest problem is the addition of bogus nodes to a graph for which tamper-proofing techniques
are required. Collberg et al. [37] suggest the use of Java reflection may help. However, they did not
implement this because they conclude that the code would be unstealthy as this kind of code is unusual
in most programs.

Luo et al. [109] describe an algorithm based on CT using the Chinese Remainder Theorem [102] to
split the watermark .

Is this just
plagiarised
from coll-
berg?

96

3.3.5 Tamper-proofing by Constant Encoding

He [79], and later Thomborson et al. [163], developed a tamper-proofing technique for dynamic graph
watermark called constant encoding. Constant encoding encodes some of the constants in a program
into a tree structure similar to the watermark and decodes them at run-time. An attacker cannot
distinguish between the watermark graph and the constant encoding graphs so they cannot change any
graph structure as they may introduce bugs into the program.

Figure 3.26: A possible graph encoding of the constant 0.

For example, assuming that the constant 0 can be encoded as the graph in figure 3.26, we can replace
the constant 0 in the example Java program from listing 3.5 with a method call which decodes the graph
back into the constant 0, as shown in listing 3.10.

Listing 3.10: Example Constant Encoding Java Method - Sum

class Node { public List <Node > children = new ArrayList <Node >(); }

public static void sum(int[] numbers) {

Node cg = buildConstantGraph ();

int total = decode(cg);

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero :(");

}else{
System.out.println("total is " + total);

}
}

An attacker that manipulates the constant graph will change the encoding; so the decode function
will return a different number and the program will be semantically incorrect.

A weakness of this system is that an attacker may be able to discover that certain program functions
always return the same value, for every execution. He [79] suggests introducing dependencies, to make
the code harder to analyse, by providing an input variable to the decoding function. A further suggestion,
for future work, is to change the constant tree at runtime making the code harder to analyse.

Jian-qi et al. [85] propose using the constant encoding functions within the parameters of opaque
predicates Collberg et al. [32] so that if an attacker manipulates a constant graph control will pass to
the wrong clause of an if statement using the opaque predicate.

Thomborson et al. [163] combine the watermarking and tamper-proofing techniques further by using
sub-graphs of the watermark graph to encode constants, rather than separate graphs. Thomborson et al.
[163] also formally define the problem of tamper-proofing and show that commonly occurring constants
in computer programs can be replaced automatically and that a long series of dynamic analyses would
be required to remove the watermark. However, it is not clear if their constant encoding technique is
resilient against pattern-matching attacks – a question which is left for future work.

Khiyal et al. [91] suggest splitting constants so that large constants can be encoded in small trees.
They evaluated the constant encoding technique by comparing watermarked and tamper-proofed pro-
grams for efficiency, size and resilience. They found that the size of a program does increase when
tamper-proofed and the execution time is slower; however, the tamper-proofing technique should be
used with obfuscation to further protect a tamper-proofed program.

97

Table 3.5: Mutually replaceable instructions with their value

iadd 000
isub 001
imul 010
idiv 011
irem 100
iand 101
ior 110
ixor 111

3.3.6 Conclusion

We have presented a survey of software watermarking schemes based on graph encoding using both static
and dynamic embedding techniques. Static techniques, as always, are highly susceptible to semantics
preserving transformation attacks and are therefore easily removed by an adversary.

Dynamic graph watermarking, however, is resilient to most semantics-preserving transformations if
the right graph encoding is chosen. However, a choice between variable degrees of high stealth, resilience
and bit-rate has to be made, as no algorithm has been developed which combines the best of all these
properties.

Further research should continue into dnyamic graph watermarking, especially on improving the CT
algorithm from attacks. We intend to investigate the use of program slicing [169] to attack dynamic
watermarks and improve resilience to subtractive attacks.

3.4 Code Replacement

Some of the first patented software watermarking algorithms [83, 151] were based around the idea of
code replacement; that is, they replaced a pre-determined portion of code and/or data in a program
with the watermark value. These early techniques were susceptible to attacks, such as collusion attacks
– where the attacker compares two or more copies of a watermarked program to identify the location of
the watermark.

Monden et al. [119, 120, 121] describe a technique, MON , for watermarking Java programs by
swapping bytecode instructions within dummy methods. The dummy methods used by MON are
created either manually or automatically, and method calls are protected by opaque predicates [32] to
ensure they are not executed. The original implementation of MON is available as jMark [118]. jMark
requires the dummy method to be created and specified during embedding.

The basic idea is to assign bit values to certain Java bytecode instructions and replace the existing
instructions with the encoding bits which correspond to the watermark value. As the dummy method
is not executed there is no semantic restrictions on the replacements but the watermarked method must
be semantically correct, in order to pass the Java bytecode verifier [168].

Two methods are used to replace bytecode in the dummy method: replacement of numerical operands
and replacement of opcodes. The replacement of numerical operands ensures syntactic correctness is
preserved, however in order to increase the bit-rate of the dummy method opcodes can be replaced too.

The replacement of opcodes requires the definition of mutually replaceable opcode groups, for example
ifnull and ifnonnull are mutually replaceable but iconst_0 and ifnull are not. Table 3.5 shows
an example of mutually replaceable instructions, along with their assigned value. So the watermark
0010110110102 can be encoded in the opcode sequence isub, idiv, idiv, imul - the watermarked
method could look like listing 3.11 (using the instructions in table 3.5).

Listing 3.11: Watermarked using the instruction encoding from table 3.5

iconst_1
iconst_2
isub
idiv
idiv
imul

98

Monden et al. [121] evaluate jMark by watermarking some Java classfiles and attacking them using
and obfuscator and decompiler. They conclude that their system is resilient to most attacks, however,
this is due to the chosen systems for evaluation. For example, the chosen obfuscator does not replace
any of the watermark instructions but this is a trivial semantics-preserving transformation which could
easily remove the watermark.

It is not possible for the recogniser to know which method has the watermark embedded so jMark
decodes all of the methods and displays all possible embedded watermarks.

Myles et al. [126] implemented a version, MONSM , in Sandmark [26] and evaluated compared it to
the Davidson/Myhrvold watermarking scheme [44].

MONSM places a magic character at the beginning of an embedded watermark to allow identification
of the watermarked method, unlike jMark which decodes all methods.

MONSM differs from the jMark implementation as it automatically generates a dummy method, so
is completely automatic. However, it is difficult to generate code which is similar to the original program
and it may be discoverable by a statistical analysis of the bytecode. It may be possible to generate
code which is statistically similar to the existing program code so that the watermarked method is more
stealthy.

Myles et al. [126] found that the MONSM algorithm is highly credible, if the program is unaltered,
but not very stealthy due to the automatic generation of the dummy method. They also found that
the MON technique is not resilient to attacks, including distortive, additive, subtractive and collusive
attacks.

Fukushima and Sakurai [61], Fukushima et al. [62] combine the MON watermarking technique with
obfuscation to provide protection against collusion attacks. The idea is to obfuscate each copy of a
program differently, so that comparison of programs will show several differences – not just the watermark
location.

Thaker [162] introduces a similar scheme which embeds watermarks by swapping semantically-
equivalent x86 assembly instructions. The approach is applied to existing code and produces a semantically-
equivalent watermarked program.

Another tool, Hydan [52, 53, 51] similarly uses the replacement of semantically-equivalent instructions
for the purpose of steganographically embedding secret information in x86 binary programs. Steganog-
raphy does not require high robustness, compared to watermarking, but the two techniques are very
similar. Anckaert et al. [7, 8] further discuss Hydan’s technique for steganography, comparing it to other
techniques for hiding information in computer programs.

Pervez et al. [138] describe a MON -like system which acts on Java source, instead of bytecode. For
example, their dictionary for encoding includes assigning 000 to an if-statement, 001 to if-else, etc.

3.4.1 Spread Spectrum Watermarking

Stern et al. [159] introduce robust object watermarking ROW , based on a spread-spectrum technique
previously used for multimedia watermarking [39]. This technique differs from many other techniques
because it views the code as a whole statistical object, rather than a sequence of instructions. The tech-
nique is more resilient against collusion attacks because the watermark is spread out over the program,
rather than being in one location (such as in [83, 151]). The approach modifies the frequencies of groups
of instructions in order to watermark the code (though other statistical properties of the program could
be used). Stern et al. [159] implemented their technique for x86 assembly language and later Hachez
[71], and separately Collberg and Sahoo [28], implemented the technique for Java bytecode.

The first step in this algorithm is to extract a vector c from the program code, known as the extracted
vector. A set of instructions S of n ordered groups of machine instructions is defined. For each group of
instructions i, the frequency ci is computed (by dividing the number of occurrences of the group by the
size of the code). The extracted vector is the entity that is watermarked [159].

A watermark vector w of the same length as c is randomly generated and the program code is
iteratively modified such that each iteration produces a vector which is closer to c+w; eventually giving
us a new vector c′ that is equal to c + w. Each modification to the code must preserve the semantic
behaviour; this is achieved by using a codebook of semantically equivalent instructions and semantics-
preserving code transformations.

The recognition algorithm confirms the existence or non-existence of a watermark, above a detection
threshold.

99

The watermark should not be embedded in every method in a program to make it harder to detect
[71]. There is then the problem of identifying which methods are watermarked, during extraction. Hachez
[71] use a heuristic algorithm using attributes of methods such as the maximum stack size, the number
of exceptions, size of code, etc – they found that 95% of watermarks were able to be recovered, even in
heavily obfuscated code.

The transformation, to coerce the c to c′, used by Hachez [71] is a basic re-numbering of local variables.
For example, the instructions in the following sequence:

Listing 3.12: ’Example Pseudo-Assembly code’

iload_0
iload_1
iadd
istore_2
iload_2
iload_1
imul
istore_1

could be replaced by:

Listing 3.13: ’Example Pseudo-Assembly code’

iload_1
iload_2
iadd
istore_0
iload_0
iload_2
imul
istore_2

Both are semantically equivalent but local variable slots are re-numbered. Using this technique, the
frequency of a group of instructions such as {iload_1,iload_2} can be increased or decreased. The
re-numbering of local variables is similar to register allocation based watermarking algorithms and is
highly suseceptible to semantics-preserving transformations which affect register allocation [76].

Collberg and Sahoo [28] implemented a version of graph theoretic watermarking ROWSM in Sand-
mark [26]. ROWSM uses different techniques to change the frequency of instructions including code
cloning by method overloading or over-riding and semantically-equivilent code-replacement.

For example, a method void P() can be overloaded by a method void P(int x); this new method
is never actually executed. However, this then becomes a problem of protecting the new method from
dead-code analysis attacks, possibly using opaque predicates [32].

A code-book of semantically equivalent instructions is built manually including:

X = 0 =⇒ X = 0/Y (where Y is 6= 0) (3.7)

. . . X . . . =⇒ X = X − 1;X = X + 1; . . . X . . . (3.8)

The purpose of these transformations is to increase the frequency of instruction groups, in order
to change the vector. Applying any of the transformations will have the unwanted effect of adding
additional instruction groups. For example, consider the instruction group {isub,istore_x} – increasing
it’s frequency will likely involve adding additional instructions.

The transformations must be [27]:

1. be small

2. involve commonly occuring instruction groups

3. not trivially undoable

Finding the perfect transformation is difficult and none of the existing implementations are perfect
as many of the transformations are easily undoable by trivial obfuscations [27]. Collberg and Sahoo [28]
conclude that their implementation of ROW , while the technique is robust against some obfuscations, is
susceptible to many transformation attacks such as decompilation-recompilation and additive attacks.

100

Curran et al. [40] describe a spread-spectrum technique using a vector derived from the call graph
depth of a program. Methods, in a program, are altered such that they call themselves at the correct
depth, such as in listing 3.14.

Listing 3.14: Call depth manipulation for spread-spectrum watermarking

private int depth = 0;

public int add(int a, int b) {
if(depth == 0) {

depth ++;
return add(a, b);

}else{
/* original method code */

}
}

In this scheme, the watermark is embedded by “storing distinct points of the call depth of a Java
program run on a particular input, then subtracting their mean”, determining such calls using a debugger.
However, this scheme is not resilient to attacks, as an attacker can easily add their own method calls to
the program; thus disrupting watermark detection.

Ai et al. [5] attempt to improve on the original algorithm by introducing a collusion-attack resistant
variation. They achieve this by keeping the code-book of transformations secret, implementing their
system for Microsoft’s Common Intermediate Language.

3.4.2 Conclusion

We have presented a survey of software watermarking schemes based on code replacement, from the
basic, early patents [83, 151] to the latest spread-spectrum techniques [5].

Static techniques, as always, are highly susceptible to semantics preserving transformation attacks
and are therefore easily removed by an adversary. Even spread-spectrum techniques, which detect a
watermark above a certain threshold, are only resilient against minor attacks.

Further research should look at dynamic watermarking as static watermarking schemes are not robust
enough for intellectual property protection.

3.5 Abstract Interpretation

3.6 Threads

3.7 Execution Path

3.8 Slicing Based

101

Chapter 4

Evaluation of Static Watermarking
Algorithms

We evaluate the existing static watermarking software by watermarking 60 jar files with all available
watermark algorithms and then apply a distortive attack to each watermarked program, by obfuscating
and optimising. After all the programs have been transformed we attempt to extract the watermarks from
the programs. We expect that many watermarks will be lost during the transformations and attempt to
find which transformations most affect the watermarks.

4.1 The Watermarkers

We are testing 14 different static watermarking algorithms from 3 different watermarking systems: Sand-
mark, Allatori and DashO. The latter two are commercial systems, while the former is an academic
open-source framework (table 4.1).

4.1.1 Sandmark

SandMark [26] is a tool developed by Christian Collberg et al. at the University of Arizona for research
into software watermarking, tamper-proofing, and code obfuscation of Java bytecode. The project is
open-source and both binaries and source-code can be download from the SandMark homepage [26].

4.1.2 Allatori

Allatori [155] is a commercial Java obfuscator complete with a watermarking system created by Smardec
[154]. The company claim that ‘if it is necessary for you to protect your software, if you want to reduce
its size and to speed up its work, Allatori obfuscator is your choice’ [155].

4.1.3 DashO

DashO [?] is a commerical Java security solution, including obfuscator, watermarking and encrypter
- similar to Allatori. DashO is made by PreEmptive Solutions [?] who claim that ‘DashO provides
advanced Java obfuscation and optimization for your application’.

name type version year
Sandmark open-source 3.4.0 2004

Allatori commercial 2.8 2009
DashO commercial 6.3.3 2010

Table 4.1: The Watermarking Systems

102

4.2 The Watermark Algorithms

Sandmark contains 121 static Java bytecode watermarking algorithms [25]:

1. Add Expression adds a bogus addition expression containing the watermark to a class-file.

2. Add Initialization adds bogus local variables to a method in a class-file.

3. Add Method and Field splits a watermark in two - one half stored in the name of a bogus field,
the other half store in the name of a bogus method. The new method accesses the field, while a
randomly chosen method calls the new method to make it seem like they are part of the program.

4. Add Switch embeds the watermark in the case values of a switch statement, inserted at the
beginning of a randomly chosen method.

5. Davidson/Myhrvold [44] embeds the watermark by re-ordering basic blocks in a suitable method.

6. Graph Theoretic Watermark [167] embeds the watermark in a control-flow graph, which is
added to the original program.

7. Monden [121] embeds the watermark by replacing opcodes in a dummy method, generated by
Sandmark.

8. Qu/Potkonjak [142, 141, 124] embeds the watermark in local variable assignments by adding
constraints to the interference graphs.

9. Register Types embeds a watermark by introducing local variables of certain Java standard
library types.

10. Static Arboit [9, 125] embeds a method by encoding the watermark in an opaque predicate and
then appending the predicate to a selected branch.

11. Stern (Robust Object Watermarking) [159, 28] embeds the watermark as a statistical object
by creating a frequency vector representation of the code.

12. String Constant is a simple watermarking algorithm which simply embeds the watermark string
into the constant pool of a class-file.

13) Dash-O Pro renames classes and inserts some extra static code in each of the class-files.

14) Allatori embeds watermarks as a sequence of push and pop operations inserted into multiple class-file
methods.

4.3 The Obfuscation Algorithms

Sandmark contains a variety of semantics preserving obfuscation algorithms which we will use to evaluate
the watermarking systems. We also use Proguard [101] to optimise the test programs, as another form
of obfuscation. In total, there are 37 different transformations to be applied.

4.4 The Jar files

All the jar files that we use in the tests are plugins for the open-source text editor jEdit [?]. These
files are fairly small (average 30KB) but represent a collection of real-world Java software2 (see table
4.4). The range of plugins represent a variety of code, and were all written by different programmers
but as they are plugins they share some characteristics. For example, some classes may subclass jEdit’s
abstract plugin classes to use jEdit’s plugin API. All the test files were obtained by installing jEdit and
then using the built-in plugin manager to download the plugin jar files. The average number of classes
per jar is 11, while the average number of methods per jar is 66.

1A 13th static algorithm is included, but not counted here - Stenagoraphy. This algorithm stores a watermark within
PNG files in the program jar file.

2we found that larger files cause problems with Sandmark’s obfuscator resulting in crashes and/or extremely long embed
times

103

4.5 Results

4.5.1 Watermarking

After embedding watermarks we obtained 671 out of an expected 840 watermarked jars. Some watermark
algorithms failed to embed the specified watermark, due to error or incompatible program jar. For
example, Qu/Potkonjak could only embed watermarks in 1 of the programs because the class files were
too small for the watermark. Allatori, String Constant and Add Expression managed to correctly embed
watermarks in all 60 test programs - they were embedded and recognised correctly. Only 79.9% of the
expected watermarked jar files were actually produced (see figure 4.1).

Out of the 671 watermarked jar files only 588 contained watermarks which were successfully recog-
nised before the transformation attacks were applied. This means only 87.6% of the watermarks in the
watermarked jar files produced were actually recognised (see figure 4.1).

(a) Watermarks Embeds (b) Watermarks Recognitions

(c) Obfuscations

Figure 4.1: Watermark and Obfuscation success. Out of the 840 expected watermarked jars, only 671
were produced by the watermarkers (a), while only 588 of these were correctly recognised (b). Out of
the 26,169 expected attacked watermarked jars only 23,626 were produced (c).

4.5.2 Obfuscation

We obfuscated the 671 jar files with 36 obfuscations, 1 optimisation and 2 obfuscation combinations which
should have resulted in 26,169 attacked watermarked jars. Some algorithms failed to output some jars so
we actually obtained 23,626 attacked watermarked jars using 39 semantics preserving transformations.
We believe this is due to bugs in the implementation rather than a fundamental problem with the
algorithms. This means only 90.3% of the expected attacked watermarked jar files were actually produced
(see figure 4.1).

104

4.5.3 Recognition

The result of recognising the watermarks in the obfuscated jar files are shown in table 4.3. The number of
successful recognitions before transformations is shown in the first column, while the remaining columns
show the number of successful recognitions after transformations.

A number of zeros can be seen throughout the table indicating that no watermarks was recognised
with that combination of the watermark and transformation. These are the combinations of watermark
and transformation that we are interested.

4.5.4 Analysis

By examining the table we can see that Proguard Optimizer produces the best results overall - with a
low number of recognitions for all watermarkers, except String Constant. We can also see that some
of the other transformations remove some of the other watermarks completely. We therefore used a
combination of well performing watermarks to remove more watermarks overall (see table 4.2).

Transformation C
o
m

b
o

1

C
o
m

b
o

2

Array Folder
Array Splitter
Block Marker

Constant Pool Reorderer X
Dynamic Inliner

FalseRefactor
Integer Array Splitter

Interleave Methods X
Overload Names X X

ParamAlias
Rename Registers X X

Split Classes X
String Encoder X

Class Splitter X
Field Assignment

Method Merger
Objectify

Publicize Fields
Simple Opaque Predicates X

Static Method Bodies
Bludgeon Signatures

Boolean Splitter X
Branch Inverter

Duplicate Registers
Insert Opaque Predicates X

Irreducibility X
Merge Local Integers X

Opaque Branch Insertion X
Promote Primitive Registers X X

Promote Primitive Types
Random Dead Code
Reorder Instructions
Reorder Parameters

Transparent Branch Insertion
Variable Reassigner X

Inliner X
Proguard Optimize X X

Table 4.2: The combinations of transformations used for Combo 1 and Combo 2.

The results of running this combination of transformations are shown at the end of table 4.3, in the
‘Combo 1’ column. This removes many of the watermarks, leaving just 71 remaining and some watermark
algorithms with no remaining watermarks. We then generated ‘Combo 2’ by selecting transformations
which contained files in ‘Combo 1’ but which had the watermark removed.‘Combo 2’ removed some more

105

of the remaining watermarks resulting in just 53 files containing watermarks and the Add Switch, David-
son/Myhrvold, Monden and Allatori watermark algorithms completely defeated, compared to ‘Combo
1’.

There are still 52 watermarks recognisable after Combo 2 using the ‘String Constant’ watermark
algorithm but these can easily be removed. The String Constant algorithm creates a new, unused entry
in a class-file’s constant pool containing the watermark value. We can easily remove unused constant
pool items with a simple static analysis and therefore remove the 52 String Constant watermarks.

The last remaining watermarked file contains an ‘Add Method and Field’ watermark. This jar file
caused the obfuscators to crash and therefore could not be obfuscated. We believe that this happened
due to bugs in obfuscation implementations rather than a fundamental problem with the algorithms. We
therefore suggest that this remaining watermark could be removed if the obfuscation implementations
were corrected.

A watermarking system can fail in two ways:

1. it fails to embed the watermark.

2. the watermark is easy to remove.

A good watermarking system is one where embedding succeeds often and the watermark is not often
removed. Our results show that the static watermarking systems performed badly at embedding and
watermarks were easily removed.

4.6 Conclusion

We confirmed that none of the 14 static watermark algorithms are resilient to semantics preserving
transformations. A combination of transformations removed all but 52 ‘String Constant’ watermarks
and 1 ‘Add Method and Field’ watermark from the test files. 52 of the remaining watermarks can
be destroyed by removing (or overwriting) unused constants in a class-file’s constant pool. The last
watermarked file was rejected by some of the obfuscations and we assume that the watermark in this file
would be removed if the bugs in the obfuscations were fixed.

The two commercial watermarkers (Allatori, DashO) available do nothing to identify the owner of
our test files as the watermarks are easily removed by our transformation attacks. The fact that both
Smardec and PreEmptive Solutions provide the watermarking functionality as part of their software
on the basis of code protection is misleading. Although the watermarking functions are just one part
of Allatori and DashO, it has also been previously shown that Allatori’s string encryption technology
is flawed [88]. Additionally, a review of a previous version of DashO, in 2008, concluded that ‘the
obfuscation mechanisms were not very strong when compared to its peer obfuscators’ [136].

Software watermarking must be supplemented with other forms of protection [157], such as obfusca-
tions or tamper-proofing techniques [36], in order to better protect a program from copyright infringement
and decompilation.

We have shown that static watermarks are insufficient to prove ownership of software due to their
lack of resilience to semantics preserving transformations.

106

Original

ArrayFolder

ArraySplitter

BlockMarker

ConstantPoolReorderer

DynamicInliner

FalseRefactor

IntegerArraySplitter

InterleaveMethods

OverloadNames

ParamAlias

RenameRegisters

SplitClasses

StringEncoder

ClassSplitter

FieldAssignment

MethodMerger

Objectify

PublicizeFields

SimpleOpaquePredicates

StaticMethodBodies

BludgeonSignatures

BooleanSplitter

BranchInverter

DuplicateRegisters

InsertOpaquePredicates

Irreducibility

MergeLocalIntegers

OpaqueBranchInsertion

PromotePrimitiveRegisters

PromotePrimitiveTypes

RandomDeadCode

ReorderInstructions

ReorderParameters

TransparentBranchInsertion

VariableReassigner

Inliner

ProguardOptimize

Combo1

Combo2

A
d
d

E
x
p
re

ss
io
n

6
0

6
0

6
0

6
0

5
7

6
0

6
0

6
0

5
7

6
0

6
0

0
2
8

6
0

6
0

6
0

6
0

6
0

6
0

6
0

2
4

6
0

6
0

6
0

6
0

6
0

5
9

5
6

6
0

0
7

4
7

6
0

6
0

5
9

1
1
0

2
0

0

A
d
d

In
it
ia
li
z
a
ti
o
n

5
6

5
6

5
6

5
6

5
4

5
6

5
6

5
6

5
5

5
6

5
6

5
6

5
6

5
6

4
4

5
6

5
6

5
6

5
6

5
5

5
5

5
6

5
5

5
6

5
5
6

5
6

0
0

0
7

5
6

1
0

5
1

4
8

5
6

5
6

1
0

0

A
d
d

M
e
th

o
d

a
n
d

F
ie
ld

3
5

3
5

3
5

3
5

3
3

3
0

3
5

3
5

7
6

3
4

3
5

2
9

3
5

2
3

3
2

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

3
5

2
7

3
5

6
1

A
d
d

S
w
it
ch

5
9

5
9

5
9

5
9

5
5

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
8

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

5
9

1
1

0

D
a
v
id
so

n
/
M

y
h
rv

o
ld

1
5

1
5

1
2

1
4

1
3

1
5

1
5

1
5

1
2

1
5

1
2

1
5

7
8

1
5

1
5

1
5

1
3

1
5

1
5

1
5

1
1

1
2

1
3

8
7

1
5

1
1

6
4

4
1
4

1
3

1
3

9
2

1
3

8
3

0

G
ra

p
h

T
h
e
o
re

ti
c
W

a
te

rm
a
rk

4
7

4
7

4
7

4
7

4
5

4
5

4
7

4
7

2
9

4
7

4
7

4
7

4
6

4
7

4
7

4
7

4
7

4
7

4
7

1
4
7

4
7

4
7

4
7

4
7

3
3

0
4
7

1
0

5
4
7

4
7

4
7

2
4
7

4
5

0
0

0

M
o
n
d
e
n

5
8

5
6

5
8

5
6

5
5

5
8

5
8

5
8

2
8

5
8

5
8

5
8

5
8

5
8

5
8

5
8

5
7

5
8

5
8

7
5
8

5
8

4
8

5
5

5
6

3
1

4
4

2
5

3
2

4
4

4
6

5
6

5
8

5
8

5
8

5
8

5
6

7
5

0

Q
u
/
P
o
tk

o
n
ja
k

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

R
e
g
is
te

r
T
y
p
e
s

5
1

5
1

5
1

5
1

4
9

4
9

5
1

5
1

5
0

9
5
1

0
1
5

5
1

3
2

5
1

5
1

6
5
1

5
1

5
5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

5
1

1
8

1
0

0

S
ta

ti
c
A
rb

o
it

1
9

1
9

1
9

1
9

1
8

1
2

1
9

1
9

3
1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
1
9

1
9

0
1
9

1
9

1
9

1
9

1
9

3
1
9

1
9

0
0

2
1
9

1
9

1
9

1
0

1
9

2
2

0
0

S
te

rn
4
6

4
3

4
6

4
5

4
4

4
4

4
5

4
6

3
9

4
5

4
6

4
5

4
5

4
6

4
5

4
5

4
5

4
5

4
5

1
4
5

4
5

4
6

4
5

4
5

1
0

2
6

1
6

4
2

0
5

2
2

4
6

4
5

4
5

4
5

4
2

2
0

0

S
tr
in
g
C
o
n
st
a
n
t

6
0

6
0

6
0

6
0

5
7

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

5
5

5
2

D
a
sh

-O
P
ro

2
2

4
1
1

0
8

8
0

2
6

4
0

0
4

1
1

6
0

0
2

0
1

0
2

9
0

0
1
0

9
0

0
0

2
0

9
2

0
1

7
2
2

0
0

A
ll
a
to

ri
6
0

6
0

6
0

6
0

5
7

5
4

6
0

6
0

5
9

6
0

6
0

5
9

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

6
0

5
9

6
0

6
0

6
0

6
0

6
0

6
0

5
6

6
0

6
0

6
0

6
0

5
9

5
9

6
0

5
8

1
1

0

T
ab

le
4.

3:
E

va
lu

at
io

n
re

su
lt

s
-

al
on

g
th

e
to

p
is

th
e

n
am

e
o
f

th
e

tr
a
n

sf
o
rm

a
ti

o
n

p
er

fo
rm

ed
a
n

d
a
lo

n
g

th
e

le
ft

is
th

e
n
a
m

e
o
f

th
e

w
a
te

rm
a
rk

sy
st

em
.

107

Figure 4.2: The number of files in which watermarks were correctly embedded and recognised. Not all
the embedded watermarks were correctly recognised before transformation. This is due to the fact that
some watermarking algorithms require a minimum size class-file to store the watermark. This led to
some watermarks being embedding incorrectly or a subset of the original watermark being embedded.
The number of recognitions before the files were attacked is much higher than after applying the ‘Combo
2’ combination of transformations. In fact, all but 53 watermarks were destroyed.

108

Filename S
iz

e
(K

B
)

C
la

ss
e
s

M
e
th

o
d

s

F
ie

ld
s

L
o
c
a
ls

Accents 18.4 6 33 16 96
Activator 21.1 17 86 47 212
Ancestor 4.9 5 16 9 48

AxisHelper 12.9 7 39 33 90
Background 11.0 6 35 26 100
BufferLocal 13.1 5 31 20 105

BufferSelector 15.2 9 44 29 110
CheckStylePlugin 4.7 3 19 9 47

CodeLint 12.4 3 19 11 82
CommentFolder 3.3 2 4 3 15

CommonControls 271.6 62 436 218 1189
ConfigurableFoldHandler 24.0 15 83 53 223

ContextHelp 16.7 2 21 48 87
ContextMenu 20.3 11 64 32 136
DBTerminal 23.6 22 101 56 203

Dict 10.9 6 40 31 89
GroovyScriptEnginePlugin 3.6 1 5 1 5

HelperLauncher 7.3 4 23 10 63
HexEdit 22.7 27 137 35 321

Hyperlinks 17.0 18 74 34 194
IncludesParser 22.3 15 51 43 123

InformSideKick 24.2 10 78 82 252
JFuguePlugin 24.7 12 51 12 84

JNAPlugin 1.9 1 3 0 3
JVMStats 4.8 4 11 16 35

JalopyPlugin 22.2 22 70 13 117
JavaFold 5.2 3 10 9 50

JavaInsight 26.6 10 52 20 237
JavaScriptShell 27.6 6 38 7 103

JavascriptScriptEnginePlugin 3.6 1 5 1 5
JcrontabPlugin 19.1 11 52 35 133

JinniConsole 7.9 5 37 13 86
LineGuides 15.3 8 57 24 156

LispPaste 8.4 7 25 20 68
MacOSX 8.9 4 29 8 94

MetalColor 9.0 4 36 40 68
MibSideKick 8.5 6 23 9 60

MouseSnap 4.6 1 8 3 19
MyDoggyPlugin 24.1 17 94 46 237

Nested 15.9 12 47 23 132
NetComponents 17.8 21 137 49 336

Optional 15.4 11 68 29 226
Outline 4.6 4 13 7 33

PerlSideKick 7.2 2 4 10 15
ProjectViewer 712.1 169 1103 523 3004
PrologConsole 17.6 3 22 7 60

RETest 16.9 6 54 31 121
RecentBufferSwitcher 10.6 6 31 9 87

RecursiveOpen 8.3 4 17 9 48
Rename 5.0 6 18 14 49

SaxonAdapter 7.6 3 20 13 67
SaxonPlugin 26.3 1 1 0 1

ScriptEnginePlugin 21.2 7 54 21 166
SendBuffer 5.5 2 7 11 34

ShortcutDisplay 10.9 9 39 18 85
Sudoku 16.8 17 62 50 221

SuperScript 27.6 14 70 39 201
SwitchBuffer 22.3 17 66 43 171

TableLayout-20050920 10.1 5 70 47 296
TomcatSwitch 17.9 7 60 45 159

Average 30.0 11 66 35 180

Table 4.4: Test file statistics.

109

Chapter 5

Current Progress and Thesis Plan

5.1 PhD Road Map

Figure 5.1, page 112 shows a road map for completion of my PhD thesis.

5.2 Thesis Plan

Introduction Introduce software piracy, decompilation, software watermarking, Java, slicing, etc

Empirical Evaluation of Java Decompilers A study of Java decompilers detailing strengths and
weaknesses, showing the need for software protection techniques. Based on chapter 2 and IEEE
SCAM2009 paper [74] .

A Survey of Software Watermarking A survey of static and dynamic software watermarking, based
on chapter 3.

Empirical Evaluation of Static Watermarking Algorithms Based on chapter 4 and WCECS2010
paper [75]. Evaluating algorithms implemented in Sandmark [26].

Empirical Evaluation of Dynamic Watermarking Algorithms Similar to previous chapter but
focusing on dynamic watermarking algorithms.

Investigation of Subtractive Attacks Using Slicing The main contribution of the thesis will be
this chapter. It will contain methods of using program slicing [169] to remove dynamic software
watermarks while preserving the original program semantics.

Investigating Slicing Resistant Watermarks Investigation concerning the development of slicing
resistant watermarking algorithms.

Conclusion and Future Work Suggestions for further work might include thoughts concerning fur-
ther development of IP techniques for Java.

5.3 Program Slicing

Program slicing [169] is a program transformation technique which computes a set of program statements,
known as a program slice, that affect a point of interest known as the slicing criterion. A program slice
can be used for debugging, allowing a programmer to focus on a subset of the program. For example, a
programmer can select a certain variable as the slicing criterion and produce a slice which contains all
the code that affects the variable.

Definition 13. Program Slice [169]: An independent program guaranteed to faithfully represent the
original program within the domain of the specified subset of behaviour.

110

Definition 14. Slicing Criterion [169]: A slicing criterion is specified as a program statement and a set
of variables which specify the behaviour of interest.

Program slicing can be used to perform a subtractive attack against a watermarked program; that is,
if we know the location of the watermark we can slice the program at that point leaving a semantically
correct unwatermarked program.

Previously, slicing has been suggested as a method of attacking code obfuscations and resilient obfus-
cations have been designed based on program slicing [110, 46]. Research towards my PhD will include
using slicing in a similar way to remove and suggest improvements for software watermarking techniques.

5.4 Finding Watermarks

It may be possible to find watermarks by analysing the execution of a program. For example, if a
watermark is protected by an opaque predicate we can analyse many executions of the program to
determine which branches are not taken. Previous research has studied such program invariants [57] and
Daikon [58] is an example of an automatic invariant detector.

Definition 15. Opaque Constructs [32]: A variable V is opaque at a point p in a program, if V has a
property q at p which is known at obfuscation time. A predicate P is opaque at p if its outcome is known
at obfuscation time.

111

F
ig

u
re

5
.1

:
P

h
D

R
o
a
d

M
a
p

112

Appendix A

Decompiled Program Listings

Listing A.1: Test Result: Dava - Exceptions test program

import java.io.PrintStream;

class Exceptions2
{

public static void main(String [] r0)
{

Exceptions2 $r1;
$r1 = new Exceptions2 ();

}

public void Exceptions2 ()
{

System.out.println("a");
}

}

Listing A.2: Test Result: Dava - Casting test program

import java.io.PrintStream;

public class Casting
{

public static void main(String [] r0)
{

char c0;
for (c0 = ’\u0000 ’; c0 < ’\u0080’; c0 = (char) (c0 + 1))
{

System.out.println ((new StringBuilder ()).append("ascii ").append(c0).append("
character ").append(c0).toString ());

}
}

}

Listing A.3: Test Result: Dava - Args test program

import java.io.PrintStream;

class Args
{

public static void main(String [] r0)
{

byte b0;
b0 = (byte) (byte) 0;
System.out.println(b0);

}

113

Listing A.4: Test Result: Dava - ControlFlow test program

import java.io.PrintStream;

public class ControlFlow
{

public static int foo(int i0, int i1)
{

int $i2;
label_0:
while (true)
{

try
{

if (i0 < i1)
{

$i2 = i1;
i1++;
i0 = $i2 / i0;
continue label_0;

}
}
catch (RuntimeException $r1)
{

i0 = 10;
continue label_0;

}

return i1;
}

}

public static void main(String [] r0)
{

System.out.println(ControlFlow.foo(1, 2));
}

}

Listing A.9: Test Result: Dava - Extract 1 from connectfour test program

boolean $z4 , z5;
....
if (($z4 & $z5) != 0) {

r1.all = 1;
}

}

114

Listing A.5: Test Result: Dava - Sable test program

public class Sable
{

public static void f(short s0)
{

Rectangle r0;
boolean z0;
Drawable r1;
Circle r2;
label_0:
{

while (s0 <= 10)
{

r2 = new Circle(s0);
z0 = r2.isFat();
r1 = r2;
break label_0;

}

r0 = new Rectangle(s0 , s0);
z0 = r0.isFat();
r1 = r0;

} //end label_0:

label_1:
{

while (z0)
{

break label_1;
}

r1.draw();
} //end label_1:

}

public static void main(String [] r0)
{

Sable.f(11);
}

}

Listing A.6: Test Result: Dava - Usa test program

public class Usa
{

public String name;

private final void this()
{

name = "Detroit";
}

public Usa()
{

this.this();
}

}

115

Listing A.7: Test Result: Dava - TryFinally test program. Variable $r5 was originally $r4.

import java.io.PrintStream;

public class TryFinally
{

public static void main(String [] r0)
{

Throwable r2;
try
{

System.out.println("try");
}
catch (Throwable $r4)
{

label_0:
while (true)
{

try
{

r2 = $r4;
}
catch (Throwable $r4)
{

continue label_0;
}

System.out.println("finally");
throw r2;

}
}

System.out.println("finally");
}

}

Listing A.18: Test Result: Jad - Extract 1 from connectfour test program

if(_loop_index == _index_max)
break; /* Loop/switch isn ’t completed */

_src_tmp[_loop_index];
goto _L1

_L3:
_trg_tmp[_loop_index];
_trg_tmp[_loop_index];

_L1:
0;
if(true) goto _L3; else goto _L2

_L2:
JVM INSTR arraylength .length;
0;
JVM INSTR swap ;
System.arraycopy ();
_loop_index ++;
if(true) goto _L5; else goto _L4

_L4:
return _result;

116

Listing A.8: Test Result: Dava -Optimised test program

public class Optimised
{

public static void f(short s0)
{

Rectangle r0;
boolean z0;
Drawable r1;
Circle r2;
label_0:
{

while (s0 <= 10)
{

r2 = new Circle(s0);
z0 = r2.isFat();
r1 = r2;
break label_0;

}

r0 = new Rectangle(s0 , s0);
z0 = r0.isFat();
r1 = r0;

} //end label_0:

label_1:
{

while (z0)
{

break label_1;
}

r1.draw();
} //end label_1:

}

public static void main(String [] r0)
{

Optimised.f(11);
}

}

117

Listing A.10: Test Result: Jad - Sable test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: Sable.java

public class Sable
{

public Sable ()
{
}

public static void f(short word0)
{

Object obj;
boolean flag;
if(word0 > 10)
{

Rectangle rectangle = new Rectangle(word0 , word0);
flag = rectangle.isFat();
obj = rectangle;

} else
{

Circle circle = new Circle(word0);
flag = circle.isFat ();
obj = circle;

}
if(!flag)

((Drawable) (obj)).draw();
}

public static void main(String args [])
{

f((short)11);
}

}

Listing A.11: Test Result: Jad - ControlFlow test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: ControlFlow.java

import java.io.PrintStream;

public class ControlFlow
{

public ControlFlow ()
{
}

public int foo(int i, int j)
{

do
try
{

for(; i < j; i = j++ / i);
break;

}
catch(RuntimeException runtimeexception)
{

System.out.println(runtimeexception);
i = 10;

}
while(true);
return j;

}
}

118

Listing A.12: Test Result: Jad - Casting test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)

import java.io.PrintStream;

public class Casting
{

public Casting ()
{
}

public static void main(String args [])
{

for(char c = ’\0’; c < 128; c++)
System.out.println ((new StringBuilder ()).append("ascii ").append(c).append("

character ").append(c).toString ());

}
}

Listing A.13: Test Result: jad - Usa test program

// Decompiled by DJ v3 .9.9.91 Copyright 2005 Atanas Neshkov Date: 11/01/2009 15:15:53
// Home Page : http :// members.fortunecity.com/neshkov/dj.html - Check often for new version!
// Decompiler options: packimports (3)
// Source File Name: Usa.java

import java.io.PrintStream;

public class Usa
{

public class England
{

public class Ireland
{

public void print_names ()
{

System.out.println(name);
}

public String name;
final England this$1;

public Ireland ()
{

this$1 = England.this;
super();
name = "Dublin";

}
}

public String name;
final Usa this$0;

public England ()
{

this$0 = Usa.this;
super();
name = "London";

}
}

public Usa()
{

name = "Detroit";
}

public String name;
}

119

Listing A.14: Test Result: Jad - Exceptions test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: Exceptions2.jasmin

import java.io.PrintStream;

class Exceptions
{

Exceptions ()
{
}

public static void main(String args [])
{

new Exceptions ();
}

public void Exceptions ()
{

System.out.println("a");
System.out.println("b");
try
{

System.out.println("c");
System.out.println("d");

}
// Misplaced declaration of an exception variable
catch(Exceptions this)
{

System.out.println("e");
}

_L2:
System.out.println("f");
return;
this;
System.out.println("g");
if(true) goto _L2; else goto _L1

_L1:
}

}

120

Listing A.15: Test Result: Jad - Optimised test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: Optimised.java

public class Optimised
{

public Optimised ()
{
}

public static void f(short arg0)
{

Object obj;
if(arg0 > 10)
{

obj = JVM INSTR new #43 <Class Rectangle >;
((Rectangle) (obj)).Rectangle(arg0 , arg0);
arg0 = ((Rectangle) (obj)).isFat ();
obj = obj;

} else
{

obj = JVM INSTR new #19 <Class Circle >;
((Circle) (obj)).Circle(arg0);
arg0 = ((Circle) (obj)).isFat();
obj = obj;

}
if(arg0 == 0)

((Drawable) (obj)).draw();
}

public static void main(String arg0 [])
{

f((short)11);
}

}

Listing A.16: Test Result: Jad - TryFinally test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: TryFinally.java
// Overlapped try statements detected. Not all exception handlers will be resolved in the method

main
//Couldn ’t fully decompile method main
//Couldn ’t resolve all exception handlers in method main

import java.io.PrintStream;

public class TryFinally
{

public TryFinally ()
{
}

public static void main(String args [])
{

System.out.println("try");
System.out.println("finally");
break MISSING_BLOCK_LABEL_30;
Exception exception;
exception;
System.out.println("finally");
throw exception;

}
}

121

Listing A.17: Test Result: Jad - Args test program

// Decompiled by Jad v1.5.8e. Copyright 2001 Pavel Kouznetsov.
// Jad home page: http :// www.geocities.com/kpdus/jad.html
// Decompiler options: packimports (3)
// Source File Name: Args.jasmin

import java.io.PrintStream;

class Args
{

Args()
{
}

public static void main(String args [])
{

args = 0;
System.out.println(args);

}
}

122

Listing A.19: Test Result: Java Decompiler - Casting test program

import java.io.PrintStream;

public class Casting
{

public static void main(String [] paramArrayOfString)
{

for (char c = ’\000’; c < ’?’; c = (char)(c + ’\001’))
System.out.println("ascii " + c + " character " + c);

}
}

Listing A.20: Test Result: Java Decompiler - InnerClass test program

import java.io.PrintStream;
public class Usa {

public String name;
private final void jdMethod_this () {

this.name = "Detroit";
}
public Usa() {

jdMethod_this ();
}
public class England { public String name;

private final void jdMethod_this () { this.name = "London"; }
public England () {

jdMethod_this ();
}
public class Ireland {

public String name;
public void print_names () { System.out.println(this.name); }
private final void jdMethod_this () {

this.name = "Dublin";
}
public Ireland () {

jdMethod_this ();
}

}
}

}

Listing A.26: Test Result: Java Decompiler - Extract 1 from connectfour test program

standard.access_string tmp10_7 = new jgnat/adalib/standard$access_string;
tmp10_7.<init >();

Listing A.27: Test Result: Java Decompiler - Extract 2 from connectfour test program

public static void _elabb () throws {

Listing A.35: Test Result: jdec - Extract 1 from connectfour test program

int[] JdecGenerated173 = new int[]{ _aggr =(JdecGenerated173);71 ,143 ,214 ,286 ,357 ,429 ,500};

123

Listing A.21: Test Result: Java Decompiler - Sable test program

public class Sable {
public static void f(short paramShort) {

Object localObject;
if (paramShort > 10) {
localObject = new Rectangle;

((Rectangle)localObject).<init >(paramShort , paramShort);
paramShort = ((Rectangle)localObject).isFat();
localObject = localObject;

} else {
localObject = new Circle;
((Circle)localObject).<init >(paramShort);
paramShort = ((Circle)localObject).isFat ();
localObject = localObject;

}
if (paramShort != 0)

return;
((Drawable)localObject).draw();

}

public static void main(String [] paramArrayOfString) {
f(11);

}
}

Listing A.22: Test Result: Java Decompiler - ControlFlow test program

public class ControlFlow {
public static int foo(int paramInt1 , int paramInt2) {

while (true) {
try {

while (paramInt1 < paramInt2)
paramInt1 = paramInt2 ++ / paramInt1;

} catch (RuntimeException localRuntimeException) {
paramInt1 = 10;
break label35:

}
label35: break;

}
return paramInt2;

}

public static void main(String [] paramArrayOfString) {
System.out.println(foo(1, 2));

}
}

124

Listing A.23: Test Result: Java Decompiler - Exceptions test program

import java.io.PrintStream;

class Exceptions {
public static void main(String [] paramArrayOfString) {

new Exceptions ();
}

public void Exceptions () {
System.out.println("a");
try {

System.out.println("b");
} catch (java.lang.RuntimeException this) {

try {
System.out.println("c");
System.out.println("d");
label32: System.out.println("f");
return;

} catch (java.lang.Exception this) {
System.out.println("e");
break label32:
this = this;
System.out.println("g");

}
}

}
}

Listing A.24: Test Result: Java Decompiler - Optmised test program

public class Optimised
{

public static void f(short arg0)
{

Object localObject;
if (arg0 > 10)
{

localObject = new Rectangle;
((Rectangle)localObject).<init >(arg0 , arg0);
arg0 = ((Rectangle)localObject).isFat ();
localObject = localObject;

}
else
{

localObject = new Circle;
((Circle)localObject).<init >(arg0);
arg0 = ((Circle)localObject).isFat();
localObject = localObject;

}
if (arg0 == 0)

((Drawable)localObject).draw();
}

public static void main(String [] arg0)
{

f(11);
}

}

Listing A.25: Test Result: Java Decompiler - Args test program

import java.io.PrintStream;

class Args
{

public static void main(String [] paramArrayOfString)
{

paramArrayOfString = 0;
System.out.println(paramArrayOfString);

}
}

125

Listing A.28: Test Result: jdec - Casting test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.io.PrintStream;
import java.lang.Object;
import java.lang.StringBuilder;
import java.lang.System;

// End of Import

public class Casting

{

// CLASS: Casting:
public Casting()
{

super();
return;

}

// CLASS: Casting:
public static void main(String [] aString1)
{

char char1= 0;
char1 =0;
while(true)
{

if(char1 >= 128)
{

break;
}
if(char1 < 128)
{

StringBuilder JdecGenerated14 = new StringBuilder ();
System.out.println(JdecGenerated14.append("ascii ").append(char1).append(" character ").

append(char1).toString ());
char1=(char)((char1 + 1));
continue ;

}

}
return;

}

}

126

Listing A.29: Test Result: jdec - Usa test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.lang.Object;

// End of Import

public class Usa {

/***
**Class Fields
***/
public String name ;

// CLASS: Usa:
public Usa() {

super();
this.name ="Detroit";
return;

}
}

Listing A.36: Test Result: jdec - Extract 3 from connectfour test program

public static int [][] connectfour$Tboard_array_typeB_deep_copy(int [][] _target , int
_trgstart , int [][] _source , int _srccount , int _srcstart int [][] _result int
_loop_index int _trgindex int _srcindex int [][] _trg_tmp int [][] _src_tmp int
_loop_index int _index_max) { ... }

public static void initialize_board(int [][] board int _loop_param int _loop_limit int
_loop_param int _loop_limit Throwable _exc_var) { ... }

public static void place_disk(int [][] board , int column , Int row , int who Throwable
_exc_var) { ... }

public static void check_won(int [][] board , int who , Int won int _loop_param int
_loop_limit int _loop_param int _loop_limit Throwable _exc_var) { ... }

public static void check_tie(int [][] board , Int is_tie int _loop_param int _loop_limit
Throwable _exc_var) { ... }

public static void computer_turn(int [][] board , Int column standard$access_string []
value_typeT standard$access_string _alloc_tmp byte [] _str_literal byte [] _str_literal
byte [] _str_literal byte [] _str_literal byte [] _str_literal byte [] _str_literal
__AR_connectfour$computer_turn __AR int [][] new_board int [] evaluations int []
moves_to_unknown int count_unknowns int value int max_value int best_move int
_loop_param int _loop_limit int _loop_param int _loop_limit int _loop_param int
_loop_limit Int _out_tmp int R41b int _loop_param int _loop_limit Throwable _exc_var) {
... }

127

Listing A.30: Test Result: jdec - Sable test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.
// class file compiled with jikes , javac wouldn ’t decompile
/**** List of All Imported Classes ***/

import java.lang.Object;

// End of Import

public class Sable {
// CLASS: Sable:
public Sable () {

super();
return;

}

// CLASS: Sable:
public static void f(short short2) {

Circle aCircle1= null;
Rectangle aRectangle1= null;
Rectangle aRectangle2= null;

int int1= 0;
if(short2 > 10) {

Rectangle JdecGenerated8 = new Rectangle(short2 ,short2);
aRectangle1=JdecGenerated8;
int1=aRectangle1.isFat ();
aRectangle2=aRectangle1;

}else{
Circle JdecGenerated29 = new Circle(short2);
aCircle1=JdecGenerated29;
int1=aCircle1.isFat();
aCircle2 =aCircle1;

}
if(int1 ==0) {

aCircle2.draw();
return ;

}
}

// CLASS: Sable:
public static void main(String [] aString1) {

f((short)11);
return;

}
}

128

Listing A.31: Test Result: jdec - ControlFlow test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.lang.Object;
import java.lang.RuntimeException;

// End of Import

public class ControlFlow {

// CLASS: ControlFlow:
public ControlFlow () {

super();
return;

}

// CLASS: ControlFlow:
public int foo(int int4 , int int5) {

int int4= 0;
while(true) {

try {
if(int4 < int5) {

int4 = (int5 ++) / (int4);
continue ;

}else{

}catch(RuntimeException aRuntimeException1) {

}
int4 =10;
continue ;

}

}
return int5;

}
}

129

Listing A.32: Test Result: jdec - Exceptions test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.io.PrintStream;
import java.lang.Object;
import java.lang.RuntimeException;
import java.lang.System;

// End of Import

class Exceptions2

{

// CLASS: Exceptions2:
Exceptions2()
{

super();
return;

}

// CLASS: Exceptions2:
public static void main(String [] aString1)
{

Exceptions2 JdecGenerated2 = new Exceptions2 ();
return;

}

// CLASS: Exceptions2:
public void Exceptions2 () {

System.out.println("a");
try {

System.out.println("b");
try {

System.out.println("c");
return;

}catch(RuntimeException this) {
System.out.println("g");

}
}

}

}

130

Listing A.33: Test Result: jdec - Optimised test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.lang.Object;

// End of Import

public class Optimised {
// CLASS: Optimised:
public Optimised()
{

super();
return;

}
// CLASS: Optimised:
public static void f()
{

Circle Var_1= null;
Object Var_1= null;
Rectangle Var_1= null;

if(arg0 > 10)
{

Rectangle JdecGenerated8 = new Rectangle(Var_1=JdecGenerated8;
arg0 ,arg0);

arg0=this.isFat();
Var_1=this;

}
else
{

Circle JdecGenerated28 = new Circle(Var_1=JdecGenerated28;
arg0);

arg0=this.isFat();
Var_1=this;

}
if(arg0 ==0)
{

this.draw();
return ;

}
}

// CLASS: Optimised:
public static void main() {

f(11);
return;

}
}

131

Listing A.34: Test Result: jdec - Args test program

// Decompiled by jdec
// DECOMPILER HOME PAGE: jdec.sourceforge.net
// Main HOSTING SITE: sourceforge.net
// Copyright (C)2006 ,2007 ,2008 Swaroop Belur.
// jdec comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;
// See the File ’COPYING ’ For more details.

/**** List of All Imported Classes ***/

import java.io.PrintStream;
import java.lang.Object;
import java.lang.System;

// End of Import

class Args

{

// CLASS: Args:
Args()
{

super();
return;

}

// CLASS: Args:
public static void main(java.lang.String [] aString1)
{

java.lang.String [] aString1= 0;
aString1 =0;
System.out.println(aString1);
return;

}

}

132

Listing A.37: Test Result: jdec - Extract 4 from connectfour test program

if(board [(_loop_param - 1)][((_loop_param + 1)- 1)] != who) {

}else{

}

Listing A.38: Test Result: JODE - TryFinally test program

/* TryFinally - Decompiled by JODE
* Visit http :// jode.sourceforge.net/
*/

public class TryFinally
{

public static void main(String [] strings) {
try {

System.out.println("try");
} catch (Object object) {

System.out.println("finally");
throw object;

}
System.out.println("finally");

}
}

Listing A.50: Test Result: jReversePro - Extract 1 from connectfour test program

else if (k == 0) {
}
else if (0 & 1 != 0) {
}
else if (j != 1) {
}
else if (k != 1) {
}
else if (j != 2) {
}
else if (1 | 0 & 1 != 0) {
}
else if (1 & (o ^ 1) != 0) {
}
else if (k != 1) {
}
else if (1 & (o ^ 1) != 0) {
}

Listing A.51: Test Result: jReversePro - Extract 2 from connectfour test program

for (;n <= m;) {
else if (iArr[n - 1] == 0) {
}
else if (0 & 1 != 0) {
}

}

Listing A.53: Test Result: Mocha - Extract 1 from connectfour test program

public connectfour () throws {
$this.<init >();

}

133

Listing A.39: Test Result: JODE - ControlFlow test program

/* ControlFlow - Decompiled by JODE
* Visit http :// jode.sourceforge.net/
*/

public class ControlFlow
{

public int foo(int i, int i_0_) {
for (;;) {

try {
for (/**/; i < i_0_; i = i_0_++ / i) {

/* empty */
}
break;

} catch (RuntimeException runtimeexception) {
i = 10;

}
}
return i_0_;

}

}

Listing A.40: Test Result: JODE - Exceptions test program

Exception while decompiling:jode.AssertError: Exception handlers ranges are intersecting: [16,
32] and [8, 24].

at jode.flow.TransformExceptionHandlers.checkTryCatchOrder(TransformExceptionHandlers.java :914)
at jode.flow.TransformExceptionHandlers.analyze(TransformExceptionHandlers.java :928)
at jode.decompiler.MethodAnalyzer.analyzeCode(MethodAnalyzer.java :577)
at jode.decompiler.MethodAnalyzer.analyze(MethodAnalyzer.java :652)
at jode.decompiler.ClassAnalyzer.analyze(ClassAnalyzer.java :352)
at jode.decompiler.ClassAnalyzer.dumpJavaFile(ClassAnalyzer.java :624)
at jode.decompiler.Decompiler.decompile(Decompiler.java :192)
at jode.swingui.Main.run(Main.java :204)
at java.lang.Thread.run(Thread.java :619)

Listing A.41: Test Result: JODE - Optmised test program

/* Optimised - Decompiled by JODE
* Visit http :// jode.sourceforge.net/
*/

public class Optimised
{

public static void f(short arg0) {
boolean bool;
Drawable drawable;
if (arg0 > 10) {

Rectangle rectangle = new Rectangle;
((UNCONSTRUCTED)rectangle).Rectangle(arg0 , arg0);
bool = rectangle.isFat();
drawable = rectangle;

} else {
Circle circle = new Circle;
((UNCONSTRUCTED)circle).Circle(arg0);
bool = circle.isFat ();
drawable = circle;

}
if (!bool)

drawable.draw();
}

public static void main(String [] arg0) {
f((short) 11);

}
}

134

Listing A.42: Test Result: JODE - connectfour test program

Exception while decompiling:java.lang.IllegalArgumentException: stack length differs
at jode.flow.VariableStack.merge(VariableStack.java :77)
at jode.flow.LoopBlock.mergeContinueStack(LoopBlock.java :454)
at jode.flow.LoopBlock.mapStackToLocal(LoopBlock.java :440)
at jode.flow.SequentialBlock.mapStackToLocal(SequentialBlock.java :73)
at jode.flow.SequentialBlock.mapStackToLocal(SequentialBlock.java :73)
at jode.flow.FlowBlock.mapStackToLocal(FlowBlock.java :1531)
at jode.flow.FlowBlock.mapStackToLocal(FlowBlock.java :1515)
at jode.decompiler.MethodAnalyzer.analyzeCode(MethodAnalyzer.java :580)
at jode.decompiler.MethodAnalyzer.analyze(MethodAnalyzer.java :652)
at jode.decompiler.ClassAnalyzer.analyze(ClassAnalyzer.java :355)
at jode.decompiler.ClassAnalyzer.dumpJavaFile(ClassAnalyzer.java :624)
at jode.decompiler.Decompiler.decompile(Decompiler.java :192)
at jode.swingui.Main.run(Main.java :204)
at java.lang.Thread.run(Thread.java :619)

Listing A.43: Test Result: jReversePro - Fibo test program

Exception in thread "main" java.lang.IndexOutOfBoundsException: Index: 2304, Size: 68
at java.util.ArrayList.RangeCheck(ArrayList.java :547)
at java.util.ArrayList.get(ArrayList.java :322)
at jreversepro.reflect.JConstantPool.getCpValue(JConstantPool.java :381)
at jreversepro.reflect.JConstantPool.getUtf8String(JConstantPool.java :457)
at jreversepro.parser.JClassParser.readMethodAttributes(JClassParser.java :677)
at jreversepro.parser.JClassParser.readMethods(JClassParser.java :659)
at jreversepro.parser.JClassParser.parse(JClassParser.java :199)
at jreversepro.parser.JClassParser.parse(JClassParser.java :166)
at jreversepro.parser.JClassParser.parse(JClassParser.java :119)
at jreversepro.revengine.JSerializer.loadClass(JSerializer.java :80)
at jreversepro.JCmdMain.loadClass(JCmdMain.java :241)
at jreversepro.JCmdMain.process(JCmdMain.java :186)
at jreversepro.JCmdMain.main(JCmdMain.java :159)

Listing A.54: Test Result: Mocha - Extract 2 from connectfour test program

public static void initialize_board(int board [][]) throws {
int _loop_param;
int _loop_limit;
int _loop_param;
int _loop_limit;
expression 1
_loop_limit = 6;
pop _loop_param
if (_loop_param > _loop_limit)

expression 1
_loop_limit = 7;
pop _loop_param
for (; _loop_param <= _loop_limit; _loop_param ++)

board[_loop_param - 1][_loop_param - 1] = 0;
_loop_param ++;

}

135

Listing A.44: Test Result: jReversePro - Casting test program

// JReversePro v 1.4.1 Sun Feb 01 14:23:58 GMT 2009
// http :// jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;See the File ’COPYING ’ for more details.

// Decompiled by JReversePro 1.4.1
// Home : http :// jrevpro.sourceforge.net
// JVM VERSiON: 50.0
// SOURCEFILE: null

import java.io.PrintStream;

public class Casting{

public Casting ()
{

;
return;

}

public static void main(String [] stringArr)
{

int i = 0;
for (;i < 128;) {

System.out.println(new StringBuilder ().append("ascii ").append(i).append("
character ").append(i).toString ());

char j = (char)(i + 1);
}
return;

}

}

Listing A.45: Test Result: jReversePro - Usa test program

// JReversePro v 1.4.1 Sun Feb 01 14:25:55 GMT 2009
// http :// jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;See the File ’COPYING ’ for more details.

// Decompiled by JReversePro 1.4.1
// Home : http :// jrevpro.sourceforge.net
// JVM VERSiON: 50.0
// SOURCEFILE: Usa.java

public class Usa{

public String name;

public Usa()
{

;
name = "Detroit";
return;

}

}

136

Listing A.46: Test Result: jReversePro - TryFinally test program

// JReversePro v 1.4.1 Sun Feb 01 14:21:55 GMT 2009
// http :// jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;See the File ’COPYING ’ for more details.

// Decompiled by JReversePro 1.4.1
// Home : http :// jrevpro.sourceforge.net
// JVM VERSiON: 50.0
// SOURCEFILE: null

import java.io.PrintStream;

public class TryFinally{

public TryFinally ()
{

;
return;

}

public static void main(String [] stringArr)
{

System.out.println("try");
System.out.println("finally");
System.out.println("finally");
return;

}

}

Listing A.47: Test Result: jReversePro - Exceptions test program

jreversepro.revengine.RevEngineException: Block overlap false 16 16 35 TYPE_TRY with
true 8 8 27 TYPE_TRY

at jreversepro.runtime.JRunTimeContext.pushControlEntry(JRunTimeContext.java :302)
at jreversepro.runtime.JRunTimeContext.getBeginStmt(JRunTimeContext.java :209)
at jreversepro.revengine.JDecompiler.genSource(JDecompiler.java :476)
at jreversepro.revengine.JDecompiler.genCode(JDecompiler.java :215)
at jreversepro.reflect.JClassInfo.processMethods(JClassInfo.java :406)
at jreversepro.reflect.JClassInfo.reverseEngineer(JClassInfo.java :592)
at jreversepro.JCmdMain.process(JCmdMain.java :323)
at jreversepro.JCmdMain.process(JCmdMain.java :198)
at jreversepro.JCmdMain.main(JCmdMain.java :159)

137

Listing A.48: Test Result: jReversePro - Optmised test program

// JReversePro v 1.4.1 Tue Feb 17 18:33:46 GMT 2009
// http :// jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;See the File ’COPYING ’ for more details.

// Decompiled by JReversePro 1.4.1
// Home : http :// jrevpro.sourceforge.net
// JVM VERSiON: 46.0
// SOURCEFILE: Optimised.java

public class Optimised{

public Optimised ()
{

;
return;

}

public static void f(short i)
{

Drawable drawable;
if (i > 10) {

Rectangle rectangle = new Rectangle;
rectangle(i , i);
i = rectangle.isFat();
rectangle = rectangle;

}
else {

drawable = new Circle;
drawable(i);
i = drawable.isFat();
drawable = drawable;

}
if (i == 0)

drawable.draw();

return;
}

public static void main(String [] stringArr)
{

Optimised.f(11);
return;

}

}

138

Listing A.49: Test Result: jReversePro - Args test program

// JReversePro v 1.4.1 Sun Feb 01 14:22:50 GMT 2009
// http :// jrevpro.sourceforge.net
// Copyright (C)2000 2001 2002 Karthik Kumar.
// JReversePro comes with ABSOLUTELY NO WARRANTY;
// This is free software , and you are welcome to redistribute
// it under certain conditions;See the File ’COPYING ’ for more details.

// Decompiled by JReversePro 1.4.1
// Home : http :// jrevpro.sourceforge.net
// JVM VERSiON: 45.3
// SOURCEFILE: Args.jasmin

import java.io.PrintStream;

class Args{

Args()
{

;
return;

}

public static void main(String [] stringArr)
{

stringArr = 0;
System.out.println(stringArr);
return;

}

}

Listing A.52: Test Result: Mocha - Args test program

/* Decompiled by Mocha from Args.class */
/* Originally compiled from Args.jasmin */

import java.io.PrintStream;

synchronized class Args
{

Args()
{
}

public static void main(String astring [])
{

astring = 0;
System.out.println(astring);

}
}

139

Listing A.55: Test Result: Mocha - Extract 3 from connectfour test program

if (who != 1) goto 82 else 10;

Listing A.56: Test Result: SourceAgain - Casting test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

import java.io.PrintStream;

public class Casting {

public static void main(String [] as)
{

char c = 0;

for(c = (char) 0; c < 128; c = (char) (c + 1))
System.out.println(new StringBuilder ().append("ascii ").append(c).append("

character ").append(c).toString ());
}

}

Listing A.57: Test Result: SourceAgain - Usa test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

public class Usa {

public String name = "Detroit";
}

Listing A.63: Test Result: SourceAgain - Extract 1 from connectfour test program

public connectfour () {
$this();

}

Listing A.64: Test Result: SourceAgain - Extract 2 from connectfour test program

public static void initialize_board(int [][] board) {
int _loop_limit = 6;
int _loop_param = 0;

for(_loop_param = 1; _loop_param <= _loop_limit; ++ _loop_param) {
int _loop_limit = 7;
int _loop_param = 0;

for(_loop_param = 1; _loop_param <= _loop_limit; ++ _loop_param)
board[_loop_param - 1][_loop_param - 1] = 0;

}
}

140

Listing A.58: Test Result: SourceAgain - Sable test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

public class Sable {
Warning #2008: Inheritance relationship can not be determined because Circle can not be found.
Warning #2008: Inheritance relationship can not be determined because Rectangle can not be found.
Warning #2008: Inheritance relationship can not be determined because Drawable can not be found.

public static void f(short si)
{

Object obj = null;
boolean bool = false;

if(si > 10)
{

Object obj1 = new Rectangle(si, si);

bool = ((Rectangle) obj1).isFat ();
obj = obj1;

}
else
{

Object obj2 = new Circle(si);

bool = ((Circle) obj2).isFat();
obj = obj2;

}
if(!bool)

((Drawable) obj).draw();
}

public static void main(String [] as)
{

f((short) 11);
}

}

Listing A.59: Test Result: SourceAgain - TryFinally test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

import java.io.PrintStream;

public class TryFinally {

public static void main(String [] as)
{

try
{

System.out.println("try");
}
finally
{

try
{
}
finally
{

System.out.println("finally");
throw obj;

}
}
System.out.println("finally");

}
}

141

Listing A.60: Test Result: SourceAgain - ControlFlow test program

//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

public class ControlFlow {

public int foo(int i, int j)
{

for(;;)
{

try
{

if(i < j)
{

i = j++ / i;
continue;

}
}
catch(RuntimeException runtimeexception1)
{

i = 10;
continue;

}
return j;

}
}

}

Listing A.61: Test Result: SourceAgain - Exceptions test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

import java.io.PrintStream;

class Exceptions {

public void Exceptions ()
{

System.out.println("a");
label_15:

{
try
{

System.out.println("b");
try
{

System.out.println("c");
break label_15;

}
catch(RuntimeException runtimeexception1)
{

System.out.println("e");
}

}
catch(RuntimeException runtimeexception2)
{

System.out.println("g");
}
System.out.println("f");
return;

}
System.out.println("d");

}

public static void main()
{

Exceptions exceptions1 = new Exceptions ();

}
}

142

Listing A.62: Test Result: SourceAgain - Optmised test program

Warning #2002: Environment variable CLASSPATH not set.
//
// SourceAgain (TM) Professional v1.10k (C) 2003 Ahpah Software Inc
//

public class Optimised {
Warning #2008: Inheritance relationship can not be determined because Circle can not be found.
Warning #2008: Inheritance relationship can not be determined because Rectangle can not be found.
Warning #2008: Inheritance relationship can not be determined because Drawable can not be found.

public static void f(short arg0)
{

Object obj = null;
boolean bool = false;

if(arg0 > 10)
{

obj = new Rectangle;
(Rectangle) obj(arg0 , arg0);
bool = ((Rectangle) obj).isFat();
obj = obj;

}
else
{

obj = new Circle;
(Circle) obj(bool);
bool = ((Circle) obj).isFat ();
obj = obj;

}
if(!bool)

((Drawable) obj).draw();
}

public static void main(String [] arg0)
{

f((short) 11);
}

}

143

Appendix B

Bytecode Analysis Tools

ASM http://asm.ow2.org/

ASM is an all purpose Java bytecode manipulation and analysis framework. It can be used
to modify existing classes or dynamically generate classes, directly in binary form. Provided
common transformations and analysis algorithms allow to easily assemble custom complex
transformations and code analysis tools.

Soot: a Java Optimization Framework

Soot is a Java optimization framework. It provides four intermediate representations for
analyzing and transforming Java bytecode:

1. Baf: a streamlined representation of bytecode which is simple to manipulate. 2. Jimple:
a typed 3-address intermediate representation suitable for optimization. 3. Shimple: an SSA
variation of Jimple. 4. Grimp: an aggregated version of Jimple suitable for decompilation
and code inspection.

Soot can be used as a stand alone tool to optimize or inspect class files, as well as a framework
to develop optimizations or transformations on Java bytecode.

Indus http://indus.projects.cis.ksu.edu/

Indus is an effort to provide a collection of program analyses and transformations implemented
in Java to customize and adapt Java programs. It is intended to serve as an umbrella for

* static analyses such as points-to analysis, escape analysis, and dependence analyses, *
transformations such as program slicing and program specialization via partial evaluation, and
* any software module that delivers the analyses/transformations into a particular application
such as Bandera or platform such as Eclipse.

144

Appendix C

Bytecode Generation/Manipulation
Tools

A Java virtual machine executes Java bytecode in class files conforming to the class file specification
which is part of the Java Virtual Machine Specification [108] and updated for Java 1.6 in JSR202 [16].
This open specification allows tools other than Sun’s Java compiler to generate Java bytecode.

This further complicates decompilation as the source of Java bytecode (see Figure ??, page 38) is not
necessarily a Java compiler. Arbitrary bytecode can contain instruction sequences for which there is no
valid Java source due to the more powerful nature and less-restrictions in Java bytecode. For example
there are no arbitrary control flow instructions in Java but there are in Java bytecode.

145

C.1 Java → Java Bytecode Compilers

A Java → Java Bytecode compiler must take as input Java source code defined by the Java Language
Specification and output Java Bytecode defined by the Java Virtual Machine Specification [108, 16].
There are several such compilers available besides Sun’s javac.

javac Sun’s Java compiler, javac [?], is the original Java compiler from the creators of Java. It is now
part of the open-source OpenJDK [?].

GNU Java Compiler GCJ [?] is an open-source Java compiler which compiles Java to bytecode or
native machine code. GCJ can also compile Java bytecode to machine code.

Jikes Jikes [?] is a Java compiler that originated at IBM but since 2007 development has transferred
into an open-source project hosted at sourceforge.net. Jikes is written in C++ and strictly adheres
to the Java Language Specification [67] moreso than javac - for example extraneous semi-colons
after code blocks are valid with javac but not Jikes. The last version available via sourceforge.net
is 1.22 which was released October 3, 2004. This release does not support many of the Java 1.5,
has no support for Java 1.6.

Java Compiler Kit JKit [?] is a compiler designed with the aim of teaching compilation theory and
implementation and to aid research into programming languages and compilers. It is designed to
easily allow for prototyping of Java extensions or implementation of new languages which compile
to Java bytecode.

Eclipse JDT The Eclipse Java Development Tools [?] form the basis of the Eclipse Java IDE and
includes an incremental Java compiler. The Eclipse JDT adheres to the Java Language Specification
[67] more closely than javac [49].

Janino Janino [?] is an embedded compiler, which compiles blocks of Java source, rather than a
stand-alone compiler. It is intended for runtime compilation of expressions or Java server pages
and also can be used for static analysis and code manipulation.

Kopi Java Compiler The Kopi Java Compiler [?] is part of the larger open-source Kopi Suite which
includes other tools for the generation and editing of Java class files.

JastAdd Extensible Java Compiler The JastAdd Extensible Java Compiler [? 50] is a Java compiler
built with the JastAdd compiler compiler system [?]. As its name suggest it is designed to be
easily extensible and is built in a modular fashion. Java 5 features have been implemented as
modular extensions to a Java 1.4 compiler base to demonstrate modularity and extensibility that
is possible using JastAdd. It compares well with other compilers and runs within a factor of three
compared to javac.

The compilers listed here are strictly Java compilers which adhere (or closely adhere) to the Java Lan-
guage Specification [67] and Java Virtual Machine Specification [108, 16] but there are many compilers
which work with a superset or subset of the Java language which we aren’t interested in at this stage [?
]. Not all compilers listed support the latest version of Java (currently 1.6).

146

C.2 Java Bytecode Assemblers

A Java bytecode assembler takes written bytecode instructions (usually in the form of mnemonics or
a simple language) and produces a Java class file. A Java assembler may take care of such things as
constant pool generation, use of local variable names and labels. There is no standard ASCII description
language for Java bytecode provided by Sun, and different tools use different syntax to describe Java
bytecode for the assembler input. Other systems are software libraries which provide APIs for generating
and manipulating class files in Java.

ASM ASM [?] is an open-source all purpose bytecode manipulation and analysis framework which
can be used to generate or manipulate Java class files. It can be used to analyse and transform
bytecode programs [98, 15] and is used as a component in many other Java tools [?]. It is a Java
library and uses Java objects to represent class files and their attributes. In order to generate a
class file from scratch a Java application must be written which uses the ASM libraries to create a
class file and bytecode attributes to it. Figure C.1, page 148 shows a Java program using the ASM
libraries to generate a Hello World Java program.

BCEL Byte Code Engineering Library [?] is a library for manipulating and generating class files.
BCEL was originally created by Markus Dham [43] and is now an open-source project hosted by
The Apache Software Foundation. The latest version is 5.2 which was released in June 2006 and
no further work has been done on BCEL since 2006. BCEL is very similar to ASM as they are
both libraries for Java which can be used to generate and manipulate bytecode using Java objects.

The class org.apache.bcel.util.BCELifier can be used to transform any Java class file into a Java
source file which, when compiled and executed, will use the BCEL library to generate the original
class file.

Listing C.2, page 149 shows the ‘BCELified’ Hello World Java source.

Jasmin Jasmin [?] is a Java bytecode assembler initially written in 1996 as companion to the book
‘Java Virtual Machine’ [112] which is now out-of-print. The original authors no longer maintain
the program and it is now hosted as an open-source project on sourceforge.net but, as of 2006, is
no longer maintained1. The Soot framework uses a modified Jasmin assembler [164]. An extension
to the Jasmin language known as JasminXT has been defined as part of the tinapoc project [?] -
a set of reverse engineering tools for Java bytecode in early development stages2.

Jasmin takes as input a human readable bytecode representation, similar to the output of Sun’s
javap disassembler, and outputs a Java class file corresponding to the written bytecode instructions.

Constants are written inline and Jasmin takes care of the creation of the class files constant pool.

The standard ’Hello World’ program in Java would be represented in Jasmin source as figure C.3,
page 150.

1New developers were requested on 2008-01-28 via the project forum but the last release was in 2006
2the latest version is 0.4-alpha, released Feb 05 2006

147

Listing C.1: Hello World in ASM source (derived from ASM examples package).

import org . objectweb . asm . ∗ ;
import org . objectweb . asm . commons . ∗ ;

pub l i c c l a s s ASM {
pub l i c s t a t i c void main (S t r ing [] a rgs) {

ClassWriter cw = new ClassWriter (ClassWriter .COMPUTEMAXS) ;
cw . v i s i t (V1 1 ,ACC PUBLIC, "HelloWorld" , nu l l , "java/lang/Object" , n u l l) ;

// c r e a t e s a GeneratorAdapter f o r the (imp l i c i t) c on s t ruc to r
Method m = Method . getMethod ("void <init > ()") ;
GeneratorAdapter mg = new GeneratorAdapter (ACC PUBLIC,

m,
nu l l ,
nu l l ,
cw) ;

mg. loadThis () ;
mg. invokeConstructor (Type . getType (Object . c l a s s) , m) ;
mg. returnValue () ;
mg. endMethod () ;

// c r e a t e s a GeneratorAdapter f o r the ’main’ method
m = Method . getMethod ("void main (String[])") ;
mg = new GeneratorAdapter (ACC PUBLIC + ACC STATIC, m, nu l l , nu l l , cw) ;
mg. g e t S t a t i c (Type . getType (System . c l a s s) ,

"out" ,
Type . getType (PrintStream . c l a s s)) ;

mg. push ("Hello world") ;
mg. invokeVi r tua l (Type . getType (PrintStream . c l a s s) ,

Method . getMethod ("void println (String)")) ;
mg. returnValue () ;
mg. endMethod () ;

cw . v i s i tEnd () ;

code = cw . toByteArray () ;

FileOutputStream output = new FileOutputStream ("HelloWorld.class") ;
output . wr i t e (code) ;
output . c l o s e () ;

}
}

148

Listing C.2: Hello World in BCEL source.

import org . apache . bc e l . g en e r i c . ∗ ;
import org . apache . bc e l . c l a s s f i l e . ∗ ;
import org . apache . bc e l . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s Example implements Constants {

// I n s t r u c t i o n f a c t o r y c l a s s conta in s methods to c r e a t e
// bytecode i n s t r u c t i o n ob j e c t s .
p r i va t e In s t ruc t i onFac to ry f a c t o r y ;

// ConstantPoolGen holds the c l a s s ’ constant pool in fo rmat ion
p r i va t e ConstantPoolGen cp ;

// ClassGen r ep r e s en t s the c l a s s f i l e
p r i va t e ClassGen cg ;

pub l i c Example () {
// generate a new c l a s s (pub l i c c l a s s HelloWorld extends Object)
cg = new ClassGen ("HelloWorld" , "java.lang.Object" , "

HelloWorld.java" , ACC PUBLIC | ACC SUPER, new St r ing [] { }) ;
// c r e a t e a constant pool
cp = cg . getConstantPool () ;
// i n i t i a l i s e the i n s t r u c t i o n f a c t o r y
f a c t o ry = new Ins t ruc t i onFac to ry (cg , cp) ;

}

pub l i c void c r e a t eC l a s sF i l e (OutputStream out) throws IOException {
createMethod Constructor () ;
createMethod Main () ;
cg . getJavaClass () . dump(out) ;

}

pr i va t e void createMethod Constructor () {
I n s t r u c t i o nL i s t i l = new I n s t r u c t i o nL i s t () ;

MethodGen method = new MethodGen(ACC PUBLIC, Type .VOID,
Type .NO ARGS, new St r ing [] { } ,
"<init >" , "HelloWorld" , i l , cp) ;

In s t ruc t i onHand le i h 0 = i l . append (f a c t o ry . createLoad (Type .OBJECT, 0)) ;

i l . append (f a c t o r y . c r eate Invoke ("java.lang.Object" , "<init >" ,
Type .VOID, Type .NO ARGS, Constants . INVOKESPECIAL)) ;

In s t ruc t i onHand le i h 4 = i l . append (f a c t o ry . createReturn (Type .VOID)) ;

method . setMaxStack () ;

method . setMaxLocals () ;

cg . addMethod (method . getMethod ()) ;

i l . d i spo s e () ;
}

pr i va t e void createMethod Main () {
I n s t r u c t i o nL i s t i l = new I n s t r u c t i o nL i s t () ;

// generate method pub l i c s t a t i c void main (St r ing [] a rgs)
MethodGen method = new MethodGen(ACC PUBLIC | ACC STATIC,

Type .VOID, new Type [] { new ArrayType (Type .STRING, 1) } ,
new St r ing [] { "args" } , "main" , "HelloWorld" , i l , cp) ;

// g e t s t a t i c System . out
Ins t ruc t i onHand le i h 0 = i l . append (

f a c t o ry . c r e a t eF i e l dAcce s s ("java.lang.System" ,
"out" , new ObjectType ("java.io.PrintStream") ,

Constants .GETSTATIC)) ;

i l . append (new PUSH(cp , "Hello World")) ; // ldc "Hello World"

// System . out . p r i n t l n ("Hello World")
i l . append (f a c t o r y . c r eate Invoke ("java.io.PrintStream" , "println" ,

Type .VOID, new Type [] { Type .STRING } ,
Constants .INVOKEVIRTUAL)) ;

// re turn
Ins t ruc t i onHand le i h 8 = i l . append (f a c t o ry . createReturn (Type .VOID)) ;

// c a l c u l a t e max stack and l o c a l s
method . setMaxStack () ;
method . setMaxLocals () ;

// add method to c l a s s
cg . addMethod (method . getMethod ()) ;
i l . d i spo s e () ;

}

pub l i c s t a t i c void main (S t r ing [] a rgs) throws Exception {
Example c r e a t o r = new Example () ;
c r e a t o r . c r e a t eC l a s sF i l e (new FileOutputStream ("HelloWorld.class")) ;

}
}

149

Listing C.3: Hello World in Jasmin source. Comments begin with semi-colon (;).

; the c l a s s mod i f i e r and name
. c l a s s pub l i c HelloWorld
; the super c l a s s
. super java / lang /Object

; standard i n i t i a l i z e r
; a compi le r gene ra t e s a con s t ruc to r even i f one i s not de f i ned in Java

; method mod i f i e r s , name (< i n i t> i s the s p e c i a l name f o r a con s t ruc to r) ,
; parameters (none) , and return type (V i s the bytecode symbol f o r void) .
t r ea t ed
. method pub l i c < i n i t >()V

a load 0 ; push ’this’

i nvokenonv i r tua l java / lang /Object/< i n i t >()V ; invoke super con s t ruc to r .
r e turn

. end methodf igure }

; main method

; method mod i f i e r s (pub l i c + s t a t i c) , name (main) ,
; parameters (S t r ing [] a rgs) and return type (void)

. method pub l i c s t a t i c main ([Ljava/ lang / St r ing ;)V
. l im i t s tack 2 ; l im i t methods s tack he ight to 2
. l im i t l o c a l s 1 ; l im i t number o f l o c a l v a r i a b l e s to 1 (args)

; push System . out onto stack
g e t s t a t i c java / lang /System/out Ljava/ i o /PrintStream ;
; push the constant "Hello World" onto stack
ldc "Hello World"

; invoke System . out . p r i n t l n ("Hello World")
i n vok ev i r t u a l java / i o /PrintStream/ p r i n t l n (Ljava/ lang / St r ing ;)V

return
. end method

serp TODO http://serp.sourceforge.net/ still active?

Cojen Cojen [?] is a bytecode generation library with a primary goal of making raw Java classfile
generation easy. The library contains classes which equate to bytecode instructions. Cojen is a
fork of the no longer maintained Tea Trove bytecode library [?].

Cojen is another Java library, very similar to ASM and BCEL, but seems simpler - see the Hello
World example in listing C.4, page 151.

Jamaica Jamaica, The JVM Macro Assembler, is an easy to learn assembly language for JVM pro-
gramming [?]. It takes as input a hybrid Java and Java bytecode source file as input and outputs
a class file. Class, interface and method signatures are written in standard Java source while the
method body is written in a bytecode format similar to Jasmin. Jamaica bytecode instruction
format is slighlty easier to understand than Jasmin.

For example Jamaica uses the Java standard fullstop (.) to for package hierarchies and resolve pack-
age names (e.g. it is only neccesary to write PrintStream and not java.io.PrintStream). Variables,
fields and labels all use names rather than virtual machine indices unlike Jasmin.

Jamaica also supports a number of macros to make bytecode programming easier, which automat-
ically generate common bytecode instructions. For example, listing C.6, page 152 shows how the

150

Listing C.4: Hello World in Cojen source.

pub l i c c l a s s CojenTest {

pub l i c s t a t i c void main (S t r ing [] a rgs) throws Exception {
Cla s sF i l e c l a s s F i l e = new C la s sF i l e ("HelloWorld") ;
FileOutputStream outputF i l e = new FileOutputStream ("HelloWorld.class") ;

c l a s s F i l e . addDefaultConstructor () ;

TypeDesc [] params = new TypeDesc [] {TypeDesc .STRING. toArrayType () } ;
MethodInfo mainMethod = c l a s s F i l e . addMethod (Mod i f i e r s .PUBLIC STATIC,

"main" , nu l l , params) ;
CodeBuilder b = new CodeBuilder (mainMethod) ;

TypeDesc pr intStream = TypeDesc . f o rC l a s s ("java.io.PrintStream") ;

b . l o adS t a t i cF i e l d ("java.lang.System" , "out" , pr intStream) ;
b . loadConstant ("Hello World") ;

params = new TypeDesc [] {TypeDesc .STRING} ;
b . i nvokeVi r tua l (printStream , "println" , nu l l , params) ;

b . returnVoid () ;

c l a s s F i l e . writeTo (outputF i l e) ;
outputF i l e . c l o s e () ;

}

}

151

three lines of bytecode in listing C.5 can be condensed into one line using the %println macro.

Listing C.5, page 152 shows the Hello World program using Jamaica.

Listing C.5: Hello World in Jamaica source.

pub l i c c l a s s Hel loJamaica {

pub l i c s t a t i c void main (S t r ing [] a rgs) {
g e t s t a t i c System . out PrintStream
ldc "Hello World"

i n v ok ev i r t u a l PrintStream . p r i n t l n (S t r ing) void
}

}

Listing C.6: Hello World in Jamaica source using a macro.

pub l i c c l a s s Hel loJamaica {

pub l i c s t a t i c void main (S t r ing [] a rgs) {
%pr i n t l n "Hello World"

}

}

The most recently active in development bytecode assembly system is ASM, while Jasmin and BCEL are
widely used and mature systems. ASM, BCEL and Cojen are all Java libraries for the generation and
manipulation of bytecode via the use of Java objects whereas Jasmin compiles human readable bytecode
instructions into classfiles.

The use of Java objects for the manipulation of bytecode files will be more familar to Java program-
mers but still needs a thorough understanding of the bytecode language.

Althought out-of-print ‘Java Virtual Machine’ [112] is an excellent reference for the Jasmin software.
Jamaica code is more readable than Jasmin code but not as similar to actual bytecode due to its use of
macros which can make the code easier to read. Tinapoc [?] includes a new version 2.0 of Jasmin and
an extension of the language known as JasminXT.

152

C.2.1 Other language → Java Bytecode Compilers

Althought the JVM was initially designed with only Java in mind there are many other languages aimed
at the Java platform. Unlike Common Intermediate Language virtual machines the Java Virtual Machine
was designed from the beginning to execute only Java bytecode generated from Java source. Most of
the language compilers for other languages include libraries which help to execute features of the specific
language on the JVM.

A few languages are listed here for a comprehensive, up-to-date list see [?].

Groovy Groovy is ‘an agile dynamic language for the Java Platform’. It is a scripting language which
builds on the strengths of Java and the JVM aimed at Java developers and others familar with
scripting languages. Groovy includes an interperater and a bytecode compiler. It produces bytecode
which uses a Java library for Groovy functions.

A simple Hello World program consisting of the line

println "Hello World"

produces a 700 line bytecode program3 and requires the inclusion of Groovy’s library classes.

Groovy is in mature and still in development and it is also going standardization process via a Java
Community Process under JSR2414.

Rhino Rhino is an open-source implementation of JavaScript written in Java which also includes a
compiler to Java bytecode. The compiler produces bytecode which requires the use of the Rhino
runtime library.

Scala The Scala programming language integrates the features of object orientated programming with
those of functional programming. There exists an interperater and compiler written in Java and a
compiler which compiles Scala code to bytecode to be executed on a JVM.

JGNAT JGNAT is an open-source Ada compiler which compiles Ada source into Java bytecode.

Jython Jython is a Java implementation of the Python programming langauge. Version 2.2.1 and below
contain a Python to Java bytecode compiler but this is no longer maintained and is dropped from
the latest beta5 release.

3The output of javap -verbose HelloWorld was 700 lines
4http://www.jcp.org/en/jsr/detail?id=241
52.5b0, 31/10/2008

153

http://www.jcp.org/en/jsr/detail?id=241

C.2.2 Bytecode Optimisers

A bytecode optimiser takes as input a Java class file, performs optimising transformations and outputs
a semantically equivalent Java class file. For example an optimiser might perform peephole optimisation
on the bytecode by replacing a set of instructions with a smaller set of equivalent instructions.

As an example the following bytecode

iconst_1

iconst_2

iadd

could be replaced by

iconst_3

This is known as constant folding.

Soot Soot is a Java optimisation framework created by the Sable Research Group at McGill University.
It can transform class files into one of four intermediate representations of Java (Baf, Jimple,
Shimple, Grimp) which are suitable for transformation and analysis operations. Baf is closest to
bytecode, whereas Grimp is closest to Java source code.

ProGuard ProGuard [?] is an open-source Java class file shrinker, optimizer, obfuscator, and prever-
ifier.

JODE JODE [?] is an open-source decompiler and optimiser for Java bytecode. It is able to decompiler
Java 1.3 source and also contains an optimiser which can perform optimising transformations on
class files.

Zelix Classmaster Zelix Classmaster [?] is a commerical obfuscator and optimiser sold by Zelix Pty
Ltd.

154

C.2.3 Bytecode Obfuscators

A bytecode obfuscator takes a Java class file as input, performs some obfuscating transformations and
outputs a semantically equivalent class file.

An simple obfuscation might be to randomise constants in a classfile constant pool. Performing name
randomisation is easier on a class file than a Java file because all the constants as stored in the constant
pool and are referenced by their index throughout the bytecode.

Consider the following class Randomise and the extract from it’s constant pool (Listing C.7), which
contains a private method named sayHello. The name of this method gives away the purpose of the
method and would be useful to an attacker in understanding the source code after decompiling.

Listing C.7: Randomise Class.

public class Randomise {

public static void main(String [] args) {
sayHello ();

}

private static void sayHello () {
System.out.println("Hello World");

}

}

1: CONSTANT_Methodref - class_index: 7 name_and_type_index: 17
2: CONSTANT_Methodref - class_index: 6 name_and_type_index: 18
3: CONSTANT_Fieldref - class_index: 19 name_and_type_index: 20
4: CONSTANT_String: Hello World
.................
14: CONSTANT_Utf8: sayHello
15: CONSTANT_Utf8: SourceFile
16: CONSTANT_Utf8: Randomise.java
17: CONSTANT_NameAndType - name_index: 8 descriptor_index: 9
18: CONSTANT_NameAndType - name_index: 14 descriptor_index: 9
.................
31: CONSTANT_Utf8: (Ljava/lang/String ;)V

The name sayHello is stored in the constant pool at index 14 and every place that name is mentioned
in the Java source is replace by a reference to the constant pool. We can change the string at constant
pool index 14 to some random name to confuse attackers of the class file.

ProGuard ProGuard [?] is an open-source Java class file shrinker, optimizer, obfuscator, and prever-
ifier.

Zelix Classmaster Zelix Classmaster [?] is a commerical obfuscator and optimiser sold by Zelix Pty
Ltd.

155

Appendix D

Java Class File Format

Class file primitives types: TODO
A Java compiler compiles Java source code into intermediate Java Byte Code in files ending with

the extension .class. Listing D.2, page 158 shows a hex dump of the Java class file for the hello world
program (Listing D.1, page 158).

Java class files are divided into 10 areas:

Magic Number 0xCAFEBABE

Version Numbers The minor and major versions of the class file

Constant Pool Pool of constants for the class

Access Flags e.g. abstract, static, etc

This Class The name of the current class

Super Class The name of the super class

Interfaces Any interfaces in the class

Fields Any fields in the class

Methods Any methods in the class

Attributes Any attributes of the class

Magic Number

The first four bytes of a class file is the magic number 0xCAFEBABE (3405691582 in decimal) which
identifies the file as a Java class file to the Java Virtual Machine. The choice of magic number was taken
by James Gosling who used a similar hex number 0xCAFEDEAD to describe a local cafe they frequented
and which was used as the magic number for a an object file format. When a new magic number was
needed for the Java class file a search for words other than DEAD resulted in the use of BABE [?].

Version Numbers

The next four bytes are the major and minor version numbers of the compiler used. The minor version
of listing D.2, page 158 is 0x0000 and the major version is 0x0031 (decimal 49). Versions of Java Virtual
Machines are J2SE 6.0=50, J2SE 5.0=49, JDK 1.4=48, JDK 1.3=47, JDK 1.2=46, JDK 1.1=45.

156

Figure D.1: Conceptual diagram of a Java class file. Source: [?]

Constant Pool

The next two bytes of a class file are the constant pool count. The constant pool is an array of variable
length elements containing every constant and variable name used in the Java class. Constants are
referenced by their constant pool index through the bytecode. Each constant in the pool is preceded by
a tag denoting it’s type (TODO: INSERT TABLE OF TYPES). The count of the constant pool is one
greater than the actual number of entries as the constant pool count is included itself in the count. A lot
of the tags in the constant pool are symbolic references to other members of the constant pool. Symbolic
references are resolved at runtime.

The constant pool count bytes are 0x00, 0x1D (decimal 29) in listing D.2, page 158 meaning that
there are 28 constants and/or variables used in the program.

Access Flags

The first two bytes after the constant pool are access flags which show whether the file is a class or
interface and whether it is final, abstract, and/or public. Access flags are or’d together to generate a
modifier containing all the access flags.

TODO: INSERT TABLE FROM PAGE 35, decompiling Java.

This Class

This class contains an reference to an index in the constant pool containing the name of the class defined
in the file.

157

Listing D.1: Hello World Java Program

public class HelloWorld {
public static void main(String [] args) {

System.out.println("Hello World");
}

}

Listing D.2: Hex Dump of Hello World Java Program

CAFEBABE00000031001D0A0006000F09001000110800120A
001300140700150700160100063 C696E69743E0100032829
56010004436 F646501000F4C696E654E756D626572546162
6C650100046D61696E010016285B4C6A6176612F6C616E67
2F537472696E673B295601000A536F7572636546696C6501
000 F48656C6C6F576F726C642E6A6176610C000700080700
170 C0018001901000B48656C6C6F20576F726C6407001A0C
001 B001C01000A48656C6C6F576F726C640100106A617661
2F6C616E672F4F626A6563740100106A6176612F6C616E67
2F53797374656D0100036F75740100154C6A6176612F696F
2F5072696E7453747265616D3B0100136A6176612F696F2F
5072696 E7453747265616D0100077072696E746C6E010015
284 C6A6176612F6C616E672F537472696E673B2956002100
050006000000000002000100070008000100090000001 D00
010001000000052 AB70001B100000001000A000000060001
000000010009000 B000C0001000900000025000200010000
0009 B200021203B60004B100000001000A0000000A000200
000003000800040001000 D00000002000E

Super Class

This class contains an reference to an index in the constant pool containing the name of the parent of
the class defined in the file.

Interfaces

The next two bytes of a class file are the interfaces count. The interfaces then follow as references to
indexes in the constant pool.

Fields

The next two bytes of a class file are the field count followed by the fields declared in the class file. Each
field is composed of access flags, name type, description and attributes. The access flags are or’d together
to produce a one byte modifier while the type, description and attributes are references to indexes in the
constant pool.

Methods

The next two bytes of a class file are the method count followed by the methods declared in the class
file. Each method is composed of access flags, name type, description and attributes.

Attributes

The next two bytes of a class file are the attribute count followed by attributes of the class file which
include the name of the source file, information about inner classes. Other attributes can be stored here
too.

158

Listing D.3: Mnemonic Byte Code Dump of Hello World Java Program

Class: HelloWorld
Superclass: java/lang/Object
Source File: HelloWorld.java
Access Flags: {public super synchronized }
cf->major_version: 49
cf->constant_pool_count: 29
cf->methods_count: 2
cf->attributes_count: 1
Constant Pool:

1: CONSTANT_Methodref - class_index: 6 name_and_type_index: 15
2: CONSTANT_Fieldref - class_index: 16 name_and_type_index: 17
3: CONSTANT_String: Hello World
4: CONSTANT_Methodref - class_index: 19 name_and_type_index: 20
5: CONSTANT_Class: Index 21, Name HelloWorld
6: CONSTANT_Class: Index 22, Name java/lang/Object
7: CONSTANT_Utf8: <init >
8: CONSTANT_Utf8: ()V
9: CONSTANT_Utf8: Code
10: CONSTANT_Utf8: LineNumberTable
11: CONSTANT_Utf8: main
12: CONSTANT_Utf8: ([Ljava/lang/String ;)V
13: CONSTANT_Utf8: SourceFile
14: CONSTANT_Utf8: HelloWorld.java
15: CONSTANT_NameAndType - name_index: 7 descriptor_index: 8
16: CONSTANT_Class: Index 23, Name java/lang/System
17: CONSTANT_NameAndType - name_index: 24 descriptor_index: 25
18: CONSTANT_Utf8: Hello World
19: CONSTANT_Class: Index 26, Name java/io/PrintStream
20: CONSTANT_NameAndType - name_index: 27 descriptor_index: 28
21: CONSTANT_Utf8: HelloWorld
22: CONSTANT_Utf8: java/lang/Object
23: CONSTANT_Utf8: java/lang/System
24: CONSTANT_Utf8: out
25: CONSTANT_Utf8: Ljava/io/PrintStream;
26: CONSTANT_Utf8: java/io/PrintStream
27: CONSTANT_Utf8: println
28: CONSTANT_Utf8: (Ljava/lang/String ;)V

public super synchronized class HelloWorld extends java/lang/Object

Method public <init > () -> void

0 aload_0
1 invokenonvirtual #1 <Method java/lang/Object.<init > ()V>
4 return

Method public static main (java/lang/String []) -> void

0 getstatic #2 <Field java/lang/System.out Ljava/io/PrintStream;>
3 ldc #3 <String "Hello World">
5 invokevirtual #4 <Method java/io/PrintStream.println (Ljava/lang/String ;)V>
8 return

Listing D.4: Simple use of Java if statement

public class if_simple {

public static void main(String [] args) {
if(args [0] == "test") {

System.out.println("hello");
}else{

System.out.println("goodbye");
}

}

}

159

Listing D.5: Mnemonic Byte Code Dump of Java Simple If program

public class if_simple extends java.lang.Object{
public if_simple ();

Code:
0: aload_0
1: invokespecial #1; // Method java/lang/Object."<init >":()V
4: return

public static void main(java.lang.String []);
Code:
0: aload_0
1: iconst_0
2: aaload
3: ldc #2; // String test
5: if_acmpne 19
8: getstatic #3; // Field java/lang/System.out:Ljava/io/PrintStream;
11: ldc #4; // String hello
13: invokevirtual #5; // Method java/io/PrintStream.println :(Ljava/lang/String ;)V
16: goto 27
19: getstatic #3; // Field java/lang/System.out:Ljava/io/PrintStream;
22: ldc #6; // String goodbye
24: invokevirtual #5; // Method java/io/PrintStream.println :(Ljava/lang/String ;)V
27: return

}

Listing D.6: Simple use of Java loop statements

public class loop_simple {

public static void main(String [] args) {
for(int i = 0; i < 100; i++) {

System.out.println(i);
}

int i = 0;
while(i < 100) {

System.out.println(i);
i++;

}
}

}

160

Listing D.7: Mnemonic Byte Code Dump of Simple use of Java loop statements

public class loop_simple extends java.lang.Object{
public loop_simple ();

Code:
0: aload_0
1: invokespecial #1; // Method java/lang/Object."<init >":()V
4: return

public static void main(java.lang.String []);
Code:
0: iconst_0
1: istore_1
2: iload_1
3: bipush 100
5: if_icmpge 21
8: getstatic #2; // Field java/lang/System.out:Ljava/io/PrintStream;
11: iload_1
12: invokevirtual #3; // Method java/io/PrintStream.println :(I)V
15: iinc 1, 1
18: goto 2
21: iconst_0

22: istore_1
23: iload_1
24: bipush 100
26: if_icmpge 42
29: getstatic #2; // Field java/lang/System.out:Ljava/io/PrintStream;
32: iload_1
33: invokevirtual #3; // Method java/io/PrintStream.println :(I)V
36: iinc 1, 1
39: goto 23
42: return

}

161

Listing D.8: Mnemonic Byte Code Dump of c2j Java translation of ?? - short C program with goto
statements

public class test extends java.lang.Object{
public test();

Code:
0: aload_0
1: invokespecial #1; // Method java/lang/Object."<init >":()V
4: return

public static void main(java.lang.String []) throws java.lang.Exception;
Code:
0: iconst_0
1: istore_1
2: iconst_0
3: istore_2
4: iconst_0
5: istore_3
6: iconst_1
7: istore 4
9: iconst_1
10: istore 5
12: new #2; //class java/util/Scanner
15: dup
16: getstatic #3; // Field java/lang/System.in:Ljava/io/InputStream;
19: invokespecial #4; // Method java/util/Scanner."<init >":(Ljava/io/InputStream ;)V
22: astore 6
24: aload 6
26: invokevirtual #5; // Method java/util/Scanner.nextInt :()I
29: istore_1
30: goto 38
33: astore 7
35: iconst_0
36: istore 4
38: aload 6
40: invokevirtual #5; // Method java/util/Scanner.nextInt :()I
43: istore_2
44: goto 52
47: astore 7
49: iconst_0
50: istore 5
52: iconst_0
53: istore 7
55: iconst_0
56: istore 7
58: iload 7
60: tableswitch{ //0 to 6
0: 104;
1: 107;
2: 127;
3: 164;
4: 147;
5: 177;
6: 190;
default: 204 }

104: iconst_m1
105: istore 7
107: iconst_m1
108: istore 7
110: iload 4
112: ifeq 121
115: iconst_2
116: istore 7
118: goto 204
121: iconst_3
122: istore 7
124: goto 204
127: iconst_m1
128: istore 7
130: iload 5
132: ifeq 141
135: iconst_4
136: istore 7
138: goto 204
141: iconst_5
142: istore 7
144: goto 204
147: iconst_m1
148: istore 7
150: getstatic #7; //Field java/lang/System.out:Ljava/io/PrintStream;
153: ldc #8; // String loop
155: invokevirtual #9; // Method java/io/PrintStream.print :(Ljava/lang/String ;)V
158: iconst_2
159: istore 7
161: goto 204
164: iconst_m1
165: istore 7
167: iinc 1, 1
170: bipush 6
172: istore 7
174: goto 204
177: iconst_m1
178: istore 7
180: iinc 2, 1
183: bipush 6
185: istore 7
187: goto 204
190: iconst_m1
191: istore 7
193: iload_1
194: iload_2
195: iadd
196: istore_3
197: getstatic #7; //Field java/lang/System.out:Ljava/io/PrintStream;
200: iload_3
201: invokevirtual #10; // Method java/io/PrintStream.print :(I)V
204: iload 7
206: iconst_m1
207: if_icmpne 58
210: return

Exception table:
from to target type
24 30 33 Class java/lang/Exception

38 44 47 Class java/lang/Exception

}

162

Appendix E

Bytecode Instruction Set

00 (0x00) nop

01 (0x01) aconst_null

02 (0x02) iconst_m1

03 (0x03) iconst_0

04 (0x04) iconst_1

05 (0x05) iconst_2

06 (0x06) iconst_3

07 (0x07) iconst_4

08 (0x08) iconst_5

09 (0x09) lconst_0

10 (0x0a) lconst_1

11 (0x0b) fconst_0

12 (0x0c) fconst_1

13 (0x0d) fconst_2

14 (0x0e) dconst_0

15 (0x0f) dconst_1

16 (0x10) bipush

17 (0x11) sipush

18 (0x12) ldc

19 (0x13) ldc_w

20 (0x14) ldc2_w

21 (0x15) iload

22 (0x16) lload

23 (0x17) fload

24 (0x18) dload

25 (0x19) aload

26 (0x1a) iload_0

27 (0x1b) iload_1

28 (0x1c) iload_2

29 (0x1d) iload_3

30 (0x1e) lload_0

31 (0x1f) lload_1

32 (0x20) lload_2

33 (0x21) lload_3

34 (0x22) fload_0

35 (0x23) fload_1

36 (0x24) fload_2

37 (0x25) fload_3

38 (0x26) dload_0

39 (0x27) dload_1

40 (0x28) dload_2

41 (0x29) dload_3

42 (0x2a) aload_0

43 (0x2b) aload_1

44 (0x2c) aload_2

45 (0x2d) aload_3

46 (0x2e) iaload

47 (0x2f) laload

48 (0x30) faload

49 (0x31) daload

50 (0x32) aaload

51 (0x33) baload

52 (0x34) caload

53 (0x35) saload

54 (0x36) istore

55 (0x37) lstore

56 (0x38) fstore

57 (0x39) dstore

58 (0x3a) astore

59 (0x3b) istore_0

60 (0x3c) istore_1

61 (0x3d) istore_2

62 (0x3e) istore_3

63 (0x3f) lstore_0

64 (0x40) lstore_1

65 (0x41) lstore_2

66 (0x42) lstore_3

67 (0x43) fstore_0

68 (0x44) fstore_1

69 (0x45) fstore_2

70 (0x46) fstore_3

71 (0x47) dstore_0

72 (0x48) dstore_1

73 (0x49) dstore_2

74 (0x4a) dstore_3

75 (0x4b) astore_0

76 (0x4c) astore_1

77 (0x4d) astore_2

78 (0x4e) astore_3

79 (0x4f) iastore

80 (0x50) lastore

81 (0x51) fastore

82 (0x52) dastore

83 (0x53) aastore

84 (0x54) bastore

85 (0x55) castore

86 (0x56) sastore

87 (0x57) pop

88 (0x58) pop2

089 (0x59) dup

090 (0x5a) dup_x1

091 (0x5b) dup_x2

092 (0x5c) dup2

093 (0x5d) dup2_x1

094 (0x5e) dup2_x2

095 (0x5f) swap

096 (0x60) iadd

097 (0x61) ladd

098 (0x62) fadd

099 (0x63) dadd

163

100 (0x64) isub

101 (0x65) lsub

102 (0x66) fsub

103 (0x67) dsub

104 (0x68) imul

105 (0x69) lmul

106 (0x6a) fmul

107 (0x6b) dmul

108 (0x6c) idiv

109 (0x6d) ldiv

110 (0x6e) fdiv

111 (0x6f) ddiv

112 (0x70) irem

113 (0x71) lrem

114 (0x72) frem

115 (0x73) drem

116 (0x74) ineg

117 (0x75) lneg

118 (0x76) fneg

119 (0x77) dneg

120 (0x78) ishl

121 (0x79) lshl

122 (0x7a) ishr

123 (0x7b) lshr

124 (0x7c) iushr

125 (0x7d) lushr

126 (0x7e) iand

127 (0x7f) land

128 (0x80) ior

129 (0x81) lor

130 (0x82) ixor

131 (0x83) lxor

132 (0x84) iinc

133 (0x85) i2l

134 (0x86) i2f

135 (0x87) i2d

136 (0x88) l2i

137 (0x89) l2f

138 (0x8a) l2d

139 (0x8b) f2i

140 (0x8c) f2l

141 (0x8d) f2d

142 (0x8e) d2i

143 (0x8f) d2l

144 (0x90) d2f

145 (0x91) i2b

146 (0x92) i2c

147 (0x93) i2s

148 (0x94) lcmp

149 (0x95) fcmpl

150 (0x96) fcmpg

151 (0x97) dcmpl

152 (0x98) dcmpg

153 (0x99) ifeq

154 (0x9a) ifne

155 (0x9b) iflt

156 (0x9c) ifge

157 (0x9d) ifgt

158 (0x9e) ifle

159 (0x9f) if_icmpeq

160 (0xa0) if_icmpne

161 (0xa1) if_icmplt

162 (0xa2) if_icmpge

163 (0xa3) if_icmpgt

164 (0xa4) if_icmple

165 (0xa5) if_acmpeq

166 (0xa6) if_acmpne

167 (0xa7) goto

168 (0xa8) jsr

169 (0xa9) ret

170 (0xaa) tableswitch

171 (0xab) lookupswitch

172 (0xac) ireturn

173 (0xad) lreturn

174 (0xae) freturn

175 (0xaf) dreturn

176 (0xb0) areturn

177 (0xb1) return

178 (0xb2) getstatic

179 (0xb3) putstatic

180 (0xb4) getfield

181 (0xb5) putfield

182 (0xb6) invokevirtual

183 (0xb7) invokespecial

184 (0xb8) invokestatic

185 (0xb9) invokeinterface

186 (0xba) unused

187 (0xbb) new

188 (0xbc) newarray

189 (0xbd) anewarray

190 (0xbe) arraylength

191 (0xbf) athrow

192 (0xc0) checkcast

193 (0xc1) instanceof

194 (0xc2) monitorenter

195 (0xc3) monitorexit

196 (0xc4) wide

197 (0xc5) multianewarray

198 (0xc6) ifnull

199 (0xc7) ifnonnull

200 (0xc8) goto_w

201 (0xc9) jsr_w

Reserved opcodes:

202 (0xca) breakpoint

254 (0xfe) impdep1

255 (0xff) impdep2

164

Appendix F

Stuff

F.1 Static Single Assignment Form

Static Single Assignment [6, 150, 41] is a program form where each variable is assigned exactly once. SSA
essentially maps each user defined variable x into a set of variables x0, x1, x2, . . . for each assignment to x.

Consider the following psuedo-code where the variable x has 3 values assigned to it

x = 5
x = x × 6
x = x + 1

Converting this into SSA form results in the creation of new instances of variable x for each assignment
operation

x0 = 5
x1 = x0 × 6
x2 = x1 + 1

The variable instances on path merges must ensure that they preserve the same data-flow by assigning
the correct instance of the common variable using a function usually denoted with the φ symbol. The
function φ(x, y) takes the value of x if control derived from the left arc or y if control derived from the
right. In the example below the value of y is dependent on condition because the common variable x
takes its value from either x1 or x2 depending on whether condition is true or false.

x0 = 5

if(condition) {
x1 = x0 × 6

}else{
x2 = x1 + 1

}

y = x? + 3

Thus, in the following, we introduce a new instance x3 which takes its value from either x1 or x2

determined by the φ function and dependent on condition.

x0 = 5

if(condition) {
x1 = x0 × 6

}else{

165

x2 = x1 + 1
}

x3 = φ(x1, x2)
y = x3 + 3

The bytecode from listing 2.9, page 33 could be imagined in psuedo-bytecode as

0: iconst_0 //push 0 onto stack

1: istore_00 //pop integer from stack, store in local 00

2: ldc "hello" //push String constant onto stack

3: astore_01 //pop object reference from stack, store in local 01

4: return

where each ‘assignment’ operation (astore and istore instructions) to local variable 0 creates a new
instance of local variable 0.

An SSA transformation would create an intermediate language between bytecode and Java and is a
good first step to decompilation of Java bytecode.

166

F.2 Stack-based instructions

Java bytecode is a stack-based language and flattening the stack-based instructions is one minor problem
that machine code decompilers do not have [54]. This problem is solved by introducing variables to
represent the stack positions.

F.2.1 Stack Height

Every opcode in the Java bytecode instruction set performs known operations on the stack. It is therefore
possible to calculate the maximum stack height that a method uses. For example the instruction iconst 2
pushes one integer onto the stack. After iconst 2 is executed the stack therefore contains exactly one
more item than before iconst 2 was executed.

The bytecode below shows a list of instructions with the the type of stack operation and the size of the
stack after each instruction is executed, showing a maximum stack height of two.

0: iconst_2 push [*]

1: istore_0 pop []

2: iconst_2 push [*]

3: istore_1 pop []

4: iload_0 push [*]

5: iload_1 push [**]

6: iadd pop, pop, push [*]

7: istore_2 pop []

8: return

F.2.2 Local Variables

The number of local variables can be calculated for a method by adding the number of method arguments
to the number of extra local variables used in load and store operations within the method.

The following is an instance method with 2 paramaters

public void foobar(int foo, int bar):

0: iconst_0

1: istore_3

2: iconst_3

3: istore 4

5: iload_1

6: istore_2

7: return

this means that the first three local variables are used by this, foo and bar. There are two more more
local variable slots used within the method (3 and 4) bringing the total number of local variables to 5.

167

F.2.3 Flattening the Stack

The follow static method foo has a maximum stack height of 2 and uses 3 local variables. It simply
declares two variables and stores their sum in a third variable.

public static void foobar():

0: iconst_2

1: istore_0

2: iconst_2

3: istore_1

4: iload_0

5: iload_1

6: iadd

7: istore_2

8: return

We declare two variables to represent the two possible positions on the stack (s0 and s1) and translate
store and load operations into assignments by introducing 3 variables representing the local variable slots
(v0, v1, v2).

public static void foo():

s0 = 2

v0 = s0

s0 = 2

v1 = s0

s0 = v0

s1 = v1

s0 = s0 + s1

v2 = s0

168

F.3 JLS Inconsistancies

Due to inconsistencies in the Java Language Specification and the Java Virtual Machine Specification
there are irregularities between some Java source files and their bytecode counterparts. The try-finally
construct is a source of such problems. Listing F.1, page 169 shows Java source which, when compiled
with Jikes to Java 1.4 compatible bytecode, results in being rejected by the JVM [160]. If compiled with
javac 1.6 the code will execute though some entries in its StackMapTable are marked bogus (TODO:
what does this mean?).

Both jad and Dava are unable to decompile the bytecode for listing F.1, page 169 (Figure F.2, 171).

Listing F.1: Legal Java source which produces illegal bytecode [160]

static int test(boolean b) {
int i;

L: {
try {

if (b) return 1;
i = 2;
if (b) break L;

} finally {
if (b) i = 3;

}
i = 4;

}

return i;
}

169

Figure F.1: Bytecode resulting from compilation of listing F.1, page 169. Left-hand-side compiled with
jikes (Java 1.4), right-hand-side compiled with javac 1.6. Blue sections indicate exception table entries.

170

Listing F.2: Jad decompiler output for listing F.1, page 169 (compiled with javac 1.6)

static int test(boolean flag)
{

int i;
if(!flag)

break MISSING_BLOCK_LABEL_14;
i = 1;
byte byte0;
if(flag)

byte0 = 3;
return i;
byte byte1 = 2;
if(flag)
{

if(flag)
byte1 = 3;

break MISSING_BLOCK_LABEL_49;
}
if(flag)

byte1 = 3;
break MISSING_BLOCK_LABEL_47;
Exception exception;
exception;
if(flag)

byte1 = 3;
throw exception;
byte1 = 4;
return byte1;

}

171

Figure F.2: Control flow graph for javac 1.6 generated bytecode of listing F.1, page 169.

172

Figure F.3: Control flow graph for jikes (Java 1.4) generated bytecode of listing F.1, page 169.

173

Bibliography

[1] Mocha, the java decompiler, 1996. URL http://www.brouhaha.com/~eric/computers/mocha.

html.

[2] SourceTec (Jasmine), 1997. URL http://www.sothink.com/product/javadecompiler/index.

htm.

[3] JGNAT, 2009. URL http://code.google.com/p/jgnat/.

[4] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Techniques,
and Tools. Addison Wesley, 2nd edition, August 2006. ISBN 0321486811.

[5] Jieqing Ai, Xingming Sun, Yunhao Liu, Ingemar J. Cox, Guang Sun, and Yi Luo. A stern-based
Collusion-Secure software watermarking algorithm and its implementation. In Proceedings of the
2007 International Conference on Multimedia and Ubiquitous Engineering, pages 813–818. IEEE
Computer Society, 2007. ISBN 0-7695-2777-9.

[6] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs. In POPL
’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages, page 111, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi: 10.1145/73560.
73561.

[7] Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. Covert communication through
executables. In Program Acceleration through Application and Architecture Driven Code Transfor-
mations: Symposium Proceedings, pages 83–85, 2004.

[8] Bertrand Anckaert, Bjorn De Sutter, and Koen De Bosschere. Steganography for executables.
Information Security and Cryptology - ICISC 2004, pages 425–439, 2005.

[9] Genevieve Arboit. A method for watermarking java programs via opaque predicates. In The Fifth
International Conference on Electronic Commerce Research (ICECR-5), 2002.

[10] Jrg Arndt. Matters Computational: ideas, algorithms, source code. Springer, 1st edition edition,
October 2010. ISBN 978-3642147630. URL http://www.jjj.de/fxt/#fxtbook. Free electronic
version online.

[11] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and graph
partitioning. In Proceedings of the thirty-sixth annual ACM symposium on Theory of computing,
pages 222–231, Chicago, IL, USA, 2004. ACM. ISBN 1-58113-852-0.

[12] Michael Batchelder and Laurie Hendren. Obfuscating java: the most pain for the least gain .
Braga, Portugal, March 2007.

[13] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. Efficient local type inference.
SIGPLAN Not., 43(10):475492, 2008. ISSN 0362-1340. doi: 10.1145/1449955.1449802.

[14] Swaroop Belur and Kartik Bettadapura. Jdec: Java decompiler, 2008. URL http://jdec.

sourceforge.net/. 2008.

[15] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. ASM: a code manipulation tool to imple-
ment adaptable systems. Technical report, 2002.

174

http://www.brouhaha.com/~eric/computers/mocha.html
http://www.brouhaha.com/~eric/computers/mocha.html
http://www.sothink.com/product/javadecompiler/index.htm
http://www.sothink.com/product/javadecompiler/index.htm
http://code.google.com/p/jgnat/
http://www.jjj.de/fxt/#fxtbook
http://jdec.sourceforge.net/
http://jdec.sourceforge.net/

[16] Alex Buckley, Eva Rose, Alessandro Coglio, Borland Software Corporation, Inc. Sun Microsystems,
Inc. Tmax Soft, SavaJe Technologies, and Esmertec AG. JSR 202: JavaTM class file specification
update, 2006. URL http://jcp.org/en/jsr/detail?id=202.

[17] Business Software Alliance. Sixth annual BSA and IDC global software piracy study. Technical
Report 6, Business Software Alliance, 2008.

[18] Eugène Catalan. Note extraite d’une lettre adressée à l’éditeur. Journal för die reine und ange-
wandte Mathematik, 27:192, 1844.

[19] W.L. Caudle. On inverse of compiling. Sperry-UNIVAC, April 1980. URL http:

//www.program-transformation.org/view/Transform/OnInverseOfCompiling?skin=print.

pattern.

[20] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E. Hopkins, and
Peter W. Markstein. Register allocation via coloring. Computer Languages, 6(1):47 – 57, 1981.
ISSN 0096-0551. doi: DOI:10.1016/0096-0551(81)90048-5. URL http://www.sciencedirect.

com/science/article/B6TYK-48V1WXD-1S/2/4d1760365aca10db3f7fc10d8a263ea8.

[21] XiaoJiang Chen, DingYi Fang, JingBo Shen, Feng Chen, WenBo Wang, and Lu He. A dynamic
graph watermark scheme of tamper resistance. In Proceedings of the 2009 Fifth International Con-
ference on Information Assurance and Security - Volume 01, pages 3–6. IEEE Computer Society,
2009. ISBN 978-0-7695-3744-3.

[22] Maria Chroni and Stavros D. Nikolopoulos. Encoding watermark integers as self-inverting permuta-
tions. In Proceedings of the 11th International Conference on Computer Systems and Technologies
and Workshop for PhD Students in Computing on International Conference on Computer Systems
and Technologies, pages 125–130, Sofia, Bulgaria, 2010. ACM. ISBN 978-1-4503-0243-2.

[23] C. Cifuentes. Reverse Compilation Techniques. PhD thesis, Queensland University of Technology,
1994.

[24] C. Collberg, A. Huntwork, E. Carter, and G. Townsend. Graph theoretic software watermarks:
Implementation, analysis, and attacks. In Workshop on Information Hiding, 2004.

[25] Christian Collberg. Sandmark algorithms. Technical report, University of Arizona, Department of
Computer Science, July 2002.

[26] Christian Collberg. Sandmark, August 2004. URL http://www.cs.arizona.edu/sandmark/.

[27] Christian Collberg and Jasvir Nagra. Surreptitious Software: Obfuscation, Watermarking, and
Tamperproofing for Software Protection. Addison-Wesley Professional, 2009. ISBN 0321549252,
9780321549259.

[28] Christian Collberg and Tapas Ranjan Sahoo. Software watermarking in the frequency domain:
implementation, analysis, and attacks. J. Comput. Secur., 13(5):721–755, 2005.

[29] Christian Collberg and Clark Thomborson. On the limits of software watermarking. Technical
Report 164, August 1998.

[30] Christian Collberg and Clark Thomborson. Software watermarking: Models and dynamic embed-
dings. In Principles of Programming Languages 1999, POPL’99, January 1999.

[31] Christian Collberg, Clark Thomborson, and Douglas Low. A taxonomy of obfuscating transforma-
tions. Technical Report 148, July 1997.

[32] Christian Collberg, Clark Thomborson, and Douglas Low. Manufacturing cheap, resilient, and
stealthy opaque constructs. In Principles of Programming Languages 1998, POPL’98, January
1998.

[33] Christian Collberg, Stephen Kobourov, Edward Carter, and Clark Thomborson. Error-Correcting
graphs for software watermarking. In Proceedings of the 29th Workshop on Graph Theoretic Con-
cepts in Computer Science, pages 156–167, 2003.

175

http://jcp.org/en/jsr/detail?id=202
http://www.program-transformation.org/view/Transform/OnInverseOfCompiling?skin=print.pattern
http://www.program-transformation.org/view/Transform/OnInverseOfCompiling?skin=print.pattern
http://www.program-transformation.org/view/Transform/OnInverseOfCompiling?skin=print.pattern
http://www.sciencedirect.com/science/article/B6TYK-48V1WXD-1S/2/4d1760365aca10db3f7fc10d8a263ea8
http://www.sciencedirect.com/science/article/B6TYK-48V1WXD-1S/2/4d1760365aca10db3f7fc10d8a263ea8
http://www.cs.arizona.edu/sandmark/

[34] Christian Collberg, Clark Thomborson, and Gregg Townsend. Dynamic Graph-Based software
watermarking. Technical report, Dept. of Computer Science, Univ. of Arizona, 2004.

[35] Christian Collberg, Andrew Huntwork, Edward Carter, Gregg Townsend, and Michael Stepp. More
on graph theoretic software watermarks: Implementation, analysis, and attacks. Inf. Softw. Tech-
nol., 51(1):56–67, 2009.

[36] Christian S. Collberg and Clark Thomborson. Watermarking, Tamper-Proofing, and obfuscation
- tools for software protection. In IEEE Transactions on Software Engineering, volume 28, page
735746, August 2002.

[37] Christian S. Collberg, Clark Thomborson, and Gregg M. Townsend. Dynamic graph-based software
fingerprinting. ACM Trans. Program. Lang. Syst., 29(6):35, 2007.

[38] Patrick Cousot and Radhia Cousot. An abstract interpretation-based framework for software
watermarking. In Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 173–185, Venice, Italy, 2004. ACM. ISBN 1-58113-729-X.

[39] Ingemar J. Cox, Joe Kilian, Frank Thomson Leighton, and Talal Shamoon. A secure, robust
watermark for multimedia. In Proceedings of the First International Workshop on Information
Hiding, pages 185–206. Springer-Verlag, 1996. ISBN 3-540-61996-8.

[40] D. Curran, N.J. Hurley, and M. O. Cinneide. Securing java through software watermarking. In
Proceedings of the 2nd international conference on Principles and practice of programming in Java,
page 311324, 2003.

[41] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient method of
computing static single assignment form. In POPL ’89: Proceedings of the 16th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, page 2535, New York, NY, USA,
1989. ACM. ISBN 0-89791-294-2. doi: 10.1145/75277.75280.

[42] Barthlmy Dagenais and Laurie Hendren. Enabling static analysis for partial java programs. SIG-
PLAN Not., 43(10):313328, 2008. ISSN 0362-1340. doi: 10.1145/1449955.1449790.

[43] Markus Dahm. Byte code engineering with the bcel api. Technical report, Freie University, Berlin,
Institut fur Informatik, 2001.

[44] Robert Davidson and Nathan Myhrvold. Method and system for generating and auditing a signa-
ture for a computer program, June 1996. Microsoft Corporation, US Patent 5559884.

[45] Robert I Davidson, Nathan Myhrvold, Keith Randel Vogel, Gideon Andreas Yuval, Richard Shu-
pak, and Norman Eugene Apperson. Method and system for improving the locality of memory
references during execution of a computer program, September 2001.

[46] Stephen Drape, Anirban Majumdar, and Clark Thomborson. Slicing aided design of obfuscating
transforms. Computer and Information Science, ACIS International Conference on, 0:1019–1024,
2007. doi: 10.1109/ICIS.2007.167.

[47] Emmanuel Dupuy. Java decompiler, 2009. URL http://java.decompiler.free.fr/.

[48] Dave Dyer. Java decompilers compared, July 1997. URL http://www.javaworld.com/javaworld/

jw-07-1997/jw-07-decompilers.html.

[49] Bruce Eckel and Kirk Pepperdine. JDT more correct than Javac. 2006. Published:
\urlhttp://www.theserverside.com/news/thread.tss?thread id=38644.

[50] Torbjrn Ekman and Grel Hedin. The JastAdd extensible java compiler. In Object-Oriented Pro-
gramming, Systems and Languages (OOPSLA), page 118, 2007.

[51] Rakan El-Khalil. Hydan, 2004. URL http://www.crazyboy.com/hydan/.

[52] Rakan El-khalil and Angelos D. Keromytis. Hydan: Hiding information in program binaries. In in
International Conf. on Information and Communications Security, ICICS. Springer-Verlag, 2004.

176

http://java.decompiler.free.fr/
http://www.javaworld.com/javaworld/jw-07-1997/jw-07-decompilers.html
http://www.javaworld.com/javaworld/jw-07-1997/jw-07-decompilers.html
http://www.crazyboy.com/hydan/

[53] Rakan El-Khalil and Angelos D. Keromytis. Hydan: Information hiding in program binaries. In
International Conference on Informaton and Communications Security, 2004.

[54] Michael Van Emmerik. Static Single Assignment for Decompilation. PhD thesis, The University
of Queensland, 2007.

[55] Mike Van Emmerik. Java decompiler tests. http://www.program-
transformation.org/Transform/JavaDecompilerTests, February 2003. URL http://www.

program-transformation.org/Transform/JavaDecompilerTests.

[56] Mike Van Emmerik and Trent Waddington. Using a decompiler for Real-World source recovery.
In WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engineering, page 2736,
Washington, DC, USA, 2004. IEEE Computer Society. ISBN 0-7695-2243-2.

[57] Michael D. Ernst. Dynamically Discovering Likely Program Invariants. Ph.D., University of Wash-
ington Department of Computer Science and Engineering, Seattle, Washington, August 2000.

[58] Michael D. Ernst, Jeff H. Perkins, Philip J. Guo, Stephen McCamant, Carlos Pacheco, Matthew S.
Tschantz, and Chen Xiao. The daikon system for dynamic detection of likely invariants. Science
of Computer Programming, 69(13):3545, December 2007.

[59] Barry Fagin and Martin Carlisle. Connect Four(TM) game, written in ada, 2005. URL http:

//webdiis.unizar.es/asignaturas/EDA/gnat/jgnat/connect_four/test.html. 2005.

[60] Stephen N. Freund. The costs and benefits of java bytecode subroutines. In In Formal Underpin-
nings of Java Workshop at OOPSLA, 1998.

[61] Kazuhide Fukushima and Kouichi Sakurai. A software fingerprinting scheme for java using classfiles
obfuscation, 2004.

[62] Kazuhide Fukushima, Toshihiro Tabata, Toshiaka Tanaka, and Kouichi Sakurai. A software fin-
gerprinting scheme for java using class structure transformation. Transactions of Information
Processing Society of Japan, 46(8):2042–2052, August 2005. ISSN 03875806.

[63] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference of static types
for java bytecode. In Static Analysis Symposium, page 199219, 2000. URL www.sable.mcgill.

ca/publications.

[64] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a DAG, or a cyclic graph? a shape analysis for
heap-directed pointers in c. In Proceedings of the 23rd ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 1–15, St. Petersburg Beach, Florida, United States,
1996. ACM. ISBN 0-89791-769-3.

[65] Daofu Gong, Fenlin Liu, Bin Lu, Ping Wang, and Lan Ding. Hiding information in java class
file. In Proceedings of the 2008 International Symposium on Computer Science and Computational
Technology - Volume 02, pages 160–164. IEEE Computer Society, 2008. ISBN 978-0-7695-3498-5.
doi: 10.1109/ISCSCT.2008.231.

[66] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification Second
Edition. Addison-Wesley, Boston, Mass., 2000. ISBN 0-201-31008-2.

[67] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification, The
(3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional, 2005. ISBN 0321246780.

[68] K John Gough and Diane Corney. Implementing languages other than java on the java virtual
machine. 2001.

[69] Vladimir Grishchenko and Johann Gyger. JadClipse, 2009. URL http://jadclipse.

sourceforge.net/wiki/index.php/Main_Page.

177

http://www.program-transformation.org/Transform/JavaDecompilerTests
http://www.program-transformation.org/Transform/JavaDecompilerTests
http://webdiis.unizar.es/asignaturas/EDA/gnat/jgnat/connect_four/test.html
http://webdiis.unizar.es/asignaturas/EDA/gnat/jgnat/connect_four/test.html
www.sable.mcgill.ca/publications
www.sable.mcgill.ca/publications
http://jadclipse.sourceforge.net/wiki/index.php/Main_Page
http://jadclipse.sourceforge.net/wiki/index.php/Main_Page

[70] Gaurav Gupta and Josef Pieprzyk. Source code watermarking based on function dependency
oriented sequencing. In Proceedings of the 2008 International Conference on Intelligent Information
Hiding and Multimedia Signal Processing, pages 965–968. IEEE Computer Society, 2008. ISBN
978-0-7695-3278-3.

[71] Gael Hachez. A Comparative Study of Software Protection Tools Suited for E-Commerce with
Contributions to Software Watermarking and Smart Cards. PhD thesis, Universite Catholique de
Louvain, March 2003.

[72] Peter Haggar. Understanding bytecode makes you a better programmer.
http://www.ibm.com/developerworks/ibm/library/it-haggar bytecode/, July 2001.

[73] Maurice H Halstead. Elements of software science (Operating and programming systems series).
Elsevier, 1977. ISBN 0444002057. Published: Hardcover.

[74] James Hamilton and Sebastian Danicic. An evaluation of current java bytecode decompilers. In
Ninth IEEE International Workshop on Source Code Analysis and Manipulation, volume 0, pages
129–136, Edmonton, Alberta, Canada, 2009. IEEE Computer Society. doi: 10.1109/SCAM.2009.24.

[75] James Hamilton and Sebastian Danicic. An evaluation of static java bytecode watermarking. In
Proceedings of the International Conference on Computer Science and Applications (ICCSA’10),
The World Congress on Engineering and Computer Science (WCECS’10), San Francisco, October
2010. ISBN 978-988-17012-0-6. To appear.

[76] James Hamilton and Sebastian Danicic. A survey of software watermarking by register allocation.
Technical report, Goldsmiths, University of London, Department of Computing, August 2010.

[77] Frank Harary and Edgar M Palmer. Graphical Enumeration. Academic Press, New York,, 1973.
ISBN 0123242452.

[78] Kazuhiro HATTANDA and Shuichi ICHIKAWA. The evaluation of davidsons digital signature
scheme. IEICE TRANS. FUNDAMENTALS, E87A(1), January 2004.

[79] Yong He. Tamperproofing a Software Watermark by Encoding Constants. Masters thesis, University
of Auckland, June 2002.

[80] M. S. Hecht and J. D. Ullman. Characterizations of reducible flow graphs. J. ACM, 21(3):367–375,
1974.

[81] Matthew S. Hecht and Jeffrey D. Ullman. Flow graph reducibility. In Proceedings of the fourth
annual ACM symposium on Theory of computing, pages 238–250, Denver, Colorado, United States,
1972. ACM.

[82] Jochen Hoenicke. JODE, 2004. URL http://jode.sourceforge.net/. 2004.

[83] Keith Holmes. Computer software protection, February 1994.

[84] Johan Janssen and Henk Corporaal. Making graphs reducible with controlled node splitting. ACM
Trans. Program. Lang. Syst., 19(6):10311052, 1997. ISSN 0164-0925. doi: 10.1145/267959.269971.

[85] Zhu Jian-qi, Wang Ai-min, and Liu Yan-heng. Tamper-proofing software watermarking scheme
based on constant encoding. Education Technology and Computer Science, International Workshop
on, 1:129–132, 2010. doi: 10.1109/ETCS.2010.429.

[86] Zetao Jiang, Rubing Zhong, and Bina Zheng. A software watermarking method based on Public-
Key cryptography and graph coloring. In Genetic and Evolutionary Computing, 2009. WGEC
’09. 3rd International Conference on, pages 433–437, 2009. doi: 10.1109/WGEC.2009.76. URL
http://www.computer.org/portal/web/csdl/doi/10.1109/WGEC.2009.76.

[87] Zhu Jianqi, Liu YanHeng, and Yin KeXin. A novel dynamic graph software watermark scheme.
In Proceedings of the 2009 First International Workshop on Education Technology and Computer
Science - Volume 03, pages 775–780. IEEE Computer Society, 2009. ISBN 978-0-7695-3557-9.

178

http://jode.sourceforge.net/
http://www.computer.org/portal/web/csdl/doi/10.1109/WGEC.2009.76

[88] k00dr. Cracking the allatori string encryption, February 2008. URL http://www.moparisthebest.

com/smf/index.php?topic=238584.0.

[89] R. M Karp. Reducibility among combinatorial problems. In R. E Miller and J. W Thatcher,
editors, Complexity of Computer Computations, page 85103. Plenum Press, 1972.

[90] Kearney, Sedlmeyer, Thompson, Gray, and Adler. Software complexity measurement. Commun.
ACM, 29(11):10441050, 1986. ISSN 0001-0782. doi: 10.1145/7538.7540.

[91] Malik Sikandar Hayat Khiyal, Aihab Khan, Sehrish Amjad, and M. Shahid Khalil. Evaluating
effectiveness of tamper proofing on dynamic graph software watermarks. CoRR, abs/1001.1974,
2010.

[92] Todd B. Knoblock and Jakob Rehof. Type elaboration and subtype completion for java bytecode.
ACM Trans. Program. Lang. Syst., 23(2):243272, 2001. ISSN 0164-0925. doi: 10.1145/383043.
383045.

[93] Donald E. Knuth. The Art of Computer Programming, Volume 1 (3rd ed.): Fundamental Algo-
rithms, volume 1. Addison Wesley Longman Publishing Co., Inc., 3 edition, 1997. ISBN 0-201-
89683-4.

[94] Donald E Knuth. Art of Computer Programming, Volume 3: Sorting and Searching (2nd Edition),
volume 3. Addison-Wesley Professional, 2 edition, May 1998. ISBN 0201896850. Published:
Hardcover.

[95] Thomas Koshy. Catalan Numbers with Applications. Oxford University Press, 2008. ISBN
9780195334548.

[96] Pavel Kouznetsov. Jad - the fast java decompiler, 2001. URL http://www.varaneckas.com/jad.

[97] Douglas Kramer, Bill Joy, and David Spenhoff. The java[tm] platform. Technical report, Sun Mi-
crosystems, May 1996. URL http://java.sun.com/docs/white/platform/javaplatformTOC.

doc.html.

[98] Eugene Kuleshov. Using the ASM framework to implement common java bytecode transformation
patterns. Vancouver, Canada, March 2007.

[99] Karthik Kumar. JReversePro - java decompiler / disassembler, 2005. URL http://jreversepro.

blogspot.com.

[100] Mark D. Ladue. When java was one: Threats from hostile byte code. In Proceedings of the 20th
National Information Systems Security Conference, 1997.

[101] Eric Lafortune et al. ProGuard, July 2009. URL http://proguard.sourceforge.net/.

[102] Lay Lam. Fleeting footsteps: tracing the conception of arithmetic and algebra in ancient China.
World Scientific, Singapore, River Edge NJ, rev. ed. edition, 2004. ISBN 9789812386960. English
translation of ”The Mathematical Classic” by Sun Zi.

[103] Tri Van Le and Yvo Desmedt. Cryptanalysis of UCLA watermarking schemes for intellectual prop-
erty protection. In Revised Papers from the 5th International Workshop on Information Hiding,
pages 213–225. Springer-Verlag, 2003. ISBN 3-540-00421-1. doi: 10.1007/3-540-36415-3 14. URL
http://dx.doi.org/10.1007/3-540-36415-3_14.

[104] Hakun Lee and Keiichi Kaneko. New approaches for software watermarking by register allocation.
In Proceedings of the 2008 Ninth ACIS International Conference on Software Engineering, Artifi-
cial Intelligence, Networking, and Parallel/Distributed Computing, pages 63–68. IEEE Computer
Society, 2008. ISBN 978-0-7695-3263-9.

[105] Hakun Lee and Keiichi Kaneko. Two new algorithms for software watermarking by register alloca-
tion and their empirical evaluation. In Proceedings of the 2009 Sixth International Conference on
Information Technology: New Generations, pages 217–222. IEEE Computer Society, 2009. ISBN
978-0-7695-3596-8.

179

http://www.moparisthebest.com/smf/index.php?topic=238584.0
http://www.moparisthebest.com/smf/index.php?topic=238584.0
http://www.varaneckas.com/jad
http://java.sun.com/docs/white/platform/javaplatformTOC.doc.html
http://java.sun.com/docs/white/platform/javaplatformTOC.doc.html
http://jreversepro.blogspot.com
http://jreversepro.blogspot.com
http://proguard.sourceforge.net/
http://dx.doi.org/10.1007/3-540-36415-3_14

[106] Xavier Leroy. Java bytecode verification: Algorithms and formalizations. J. Autom. Reason., 30
(3-4):235269, 2003. ISSN 0168-7433.

[107] Jun Li and Quan Liu. Design of a software watermarking algorithm based on register allocation.
In e-Business and Information System Security (EBISS), 2010 2nd International Conference on,
pages 1–4, 2010. doi: 10.1109/EBISS.2010.5473660. URL http://dx.doi.org/10.1109/EBISS.

2010.5473660.

[108] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specification (2nd Edition).
Prentice Hall PTR, April 1999. ISBN 0201432943. Published: Paperback.

[109] Yang-Xia Luo, Jian-Hua Cheng, and Ding-Yi Fang. Dynamic graph watermark algorithm based on
the threshold scheme. In Proceedings of the 2008 International Symposium on Information Science
and Engieering - Volume 02, pages 689–693. IEEE Computer Society, 2008. ISBN 978-0-7695-
3494-7.

[110] Anirban Majumdar, Stephen J. Drape, and Clark Thomborson. Slicing obfuscations: design,
correctness, and evaluation. In DRM ’07: Proceedings of the 2007 ACM workshop on Digital
Rights Management, page 7081, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-884-8. doi:
10.1145/1314276.1314290.

[111] Michael Masnick. A detailed explanation of how the BSA misleads with piracy stats |
techdirt. http://www.techdirt.com/articles/20080718/1226541724.shtml, 2008. URL http://www.

techdirt.com/articles/20080718/1226541724.shtml.

[112] Jon Meyer and Troy Downing. The Java Virtual Machine. pub-ORA, pub-ORA, 1997. ISBN
1-56592-194-1. URL http://oreilly.com/catalog/9781565921948/.

[113] Jonathan Meyer, Daniel Reynaud, Iouri Kharon, et al. Jasmin, 2004. URL http://jasmin.

sourceforge.net/.

[114] Jerome Miecznikowski. New algorithms for a Java decompiler and their implementation in Soot.
Masters thesis, McGill University, 2003.

[115] Jerome Miecznikowski and Laurie Hendren. Decompiling java using staged encapsulation. In
WCRE ’01: Proceedings of the Eighth Working Conference on Reverse Engineering (WCRE’01),
page 368, Washington, DC, USA, 2001. IEEE Computer Society. ISBN 0-7695-1303-4.

[116] Jerome Miecznikowski and Laurie J. Hendren. Decompiling java bytecode: Problems, traps and
pitfalls. In CC ’02: Proceedings of the 11th International Conference on Compiler Construction,
page 111127, London, UK, 2002. Springer-Verlag. ISBN 3-540-43369-4.

[117] Anshuman Mishra, Rajeev Kumar, and P. P. Chakrabarti. A method-based Whole-Program wa-
termarking scheme for java class files. 2008.

[118] Akito Monden. Jmark, 2003. URL http://se.aist-nara.ac.jp/jmark/.

[119] Akito Monden, Hajimu Iida, et al. A watermarking method for computer programs. In Pro-
ceedings of the 1998 Symposium on Cryptography and Information Security, SCIS’98. Institute of
Electronics, Information and Communication Engineers, January 1998. in Japanese.

[120] Akito Monden, Hajimu Iida, Ken ichi Matsumoto, Katsuro Inoue, and Koiji Torii. Watermarking
java programs. In International Symposium on Future Software Technology ’99, pages 119–124,
October 1999.

[121] Akito Monden, Hajimu Iida, Ken ichi Matsumoto, Koji Torii, and Katsuro Inoue. A practical
method for watermarking java programs. In COMPSAC ’00: 24th International Computer Software
and Applications Conference, page 191197, Washington, DC, USA, 2000. IEEE Computer Society.
ISBN 0-7695-0792-1.

180

http://dx.doi.org/10.1109/EBISS.2010.5473660
http://dx.doi.org/10.1109/EBISS.2010.5473660
http://www.techdirt.com/articles/20080718/1226541724.shtml
http://www.techdirt.com/articles/20080718/1226541724.shtml
http://oreilly.com/catalog/9781565921948/
http://jasmin.sourceforge.net/
http://jasmin.sourceforge.net/
http://se.aist-nara.ac.jp/jmark/

[122] Alan Mycroft. Type-Based decompilation (or program reconstruction via type reconstruction). In
ESOP ’99: Proceedings of the 8th European Symposium on Programming Languages and Systems,
page 208223, London, UK, 1999. Springer-Verlag. ISBN 3-540-65699-5.

[123] Ginger Myles. Using software watermarking to discourage piracy. Crossroads - The ACM Student
Magazine, 2004. URL http://www.acm.org/crossroads/xrds10-3/watermarking.html.

[124] Ginger Myles and Christian Collberg. Software watermarking through register allocation: Im-
plementation, analysis, and attacks. In International Conference on Information Security and
Cryptology, volume 2971/2004 of Lecture Notes in Computer Science. Springer Berlin / Heidel-
berg, 2003. ISBN 978-3-540-21376-5. doi: 10.1007/978-3-540-24691-6 21. URL http://dx.doi.

org/10.1007/978-3-540-24691-6_21.

[125] Ginger Myles and Christian Collberg. Software watermarking via opaque predicates: Implementa-
tion, analysis, and attacks. In ICECR-7, 2004.

[126] Ginger Myles, Christian Collberg, Zachary Heidepriem, and Armand Navabi. The evaluation of
two software watermarking algorithms. Softw. Pract. Exper., 35(10):923938, 2005. ISSN 0038-0644.
doi: 10.1002/spe.v35:10.

[127] Nomair A. Naeem. Programmer-Friendly Decompiled Java. Masters thesis, January 2007. URL
http://www.sable.mcgill.ca/publications/thesis/#nomairMastersThesis.

[128] Nomair A. Naeem and Laurie Hendren. Programmer-Friendly decompiled java. In ICPC ’06:
Proceedings of the 14th IEEE International Conference onProgram Comprehension (ICPC’06),
page 327336. IEEE Computer Society, 2006. ISBN 0-7695-2601-2. doi: http://dx.doi.org/10.1109/
ICPC.2006.20.

[129] Nomair A. Naeem, Michael Batchelder, and Laurie Hendren. Metrics for measuring the effectiveness
of decompilers and obfuscators. In ICPC ’07: Proceedings of the 15th IEEE International Con-
ference on Program Comprehension, page 253258, Washington, DC, USA, 2007. IEEE Computer
Society. ISBN 0-7695-2860-0. doi: http://dx.doi.org/10.1109/ICPC.2007.27.

[130] Jasvir Nagra and Clark Thomborson. Threading software watermarks. In Jessica J. Fridrich,
editor, Information Hiding, volume 3200 of Lecture Notes in Computer Science, pages 208–223.
Springer, 2004. ISBN 3-540-24207-4.

[131] Jasvir Nagra, Clark Thomborson, and Christian Collberg. A functional taxonomy for software
watermarking. In Michael J. Oudshoorn, editor, Aust. Comput. Sci. Commun., pages 177–186,
Melbourne, Australia, 2002. ACS.

[132] Godfrey Nolan. Decompiling Java. APress, 2004. ISBN 1590592654.

[133] Kelly O’Hair. HPROF: a Heap/CPU profiling tool in J2SE 5.0. Sun Developer Network, De-
veloper Technical Articles & Tips, November 2004. URL http://java.sun.com/developer/

technicalArticles/Programming/HPROF.html.

[134] Jens Palsberg and Di Ma. Javawiz, 2000. URL http://www.cs.purdue.edu/homes/madi/wm/.
No longer available.

[135] Jens Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma, Qiuyun Shao, and Y. Zhang. Experience
with software watermarking. In ACSAC, pages 308–316, 2000.

[136] Tapasya Patki. DashO java obfuscator review. Technical report, University of Arizona, Department
of Computer Science, September 2008. URL http://www.cs.arizona.edu/~collberg/Teaching/

620/2008/Assignments/tools/DashO/index.html.

[137] Mike Pearson. Piracy: BSA’s $53b global piracy tab grossly inflated, argue skeptics.
http://www.ecommercetimes.com/story/67049.html?wlc=1252256745, 2009. URL http://www.

ecommercetimes.com/story/67049.html?wlc=1252256745.

181

http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://dx.doi.org/10.1007/978-3-540-24691-6_21
http://dx.doi.org/10.1007/978-3-540-24691-6_21
http://www.sable.mcgill.ca/publications/thesis/#nomairMastersThesis
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://www.cs.purdue.edu/homes/madi/wm/
http://www.cs.arizona.edu/~collberg/Teaching/620/2008/Assignments/tools/DashO/index.html
http://www.cs.arizona.edu/~collberg/Teaching/620/2008/Assignments/tools/DashO/index.html
http://www.ecommercetimes.com/story/67049.html?wlc=1252256745
http://www.ecommercetimes.com/story/67049.html?wlc=1252256745

[138] Z. Pervez, Noor-ul-Qayyum, Y. Mahmood, and H.F. Ahmad. Semblance based disseminated soft-
ware watermarking algorithm. In Computer and Information Sciences, 2008. ISCIS ’08. 23rd
International Symposium on, pages 1–4, 2008. doi: 10.1109/ISCIS.2008.4717945.

[139] Zhou Ping, Chen Xi, and Yang Xu-Guang. The software watermarking for tamper resistant radix
dynamic graph coding. Inform. Technol. J., 9:1236–1240, June 2010. doi: 10.3923/itj.2010.1236.
1240.

[140] Todd A Proebsting and Scott A Watterson. Krakatoa: Decompilation in java (Does bytecode
reveal source?). page 185197, 1997.

[141] Gang Qu and Miodrag Potkonjak. Analysis of watermarking techniques for graph coloring problem.
In Proceedings of the 1998 IEEE/ACM international conference on Computer-aided design, pages
190–193, San Jose, California, United States, 1998. ACM. ISBN 1-58113-008-2.

[142] Gang Qu and Miodrag Potkonjak. Hiding signatures in graph coloring solutions. In Information
Hiding, pages 348–367, 1999.

[143] Gang Qu and Miodrag Potkonjak. Fingerprinting intellectual property using constraint-addition.
In Design Automation Conference, pages 587–592, 2000.

[144] Raja V Rai and Laurie J Hendren. Jimple: Simplifying java bytecode for analyses and transfor-
mations. Technical report, Sable Research Group, McGill University, Montreal, Quebec, Canada,
1998.

[145] G. Ramalingam. The undecidability of aliasing. ACM Trans. Program. Lang. Syst., 16(5):1467–
1471, 1994.

[146] Lyle Ramshaw. Eliminating go to’s while preserving program structure. J. ACM, 35(4):893920,
1988. ISSN 0004-5411. doi: 10.1145/48014.48021.

[147] Mayon Software Research. ClassCracker 3, 2005. URL http://mayon.actewagl.net.au/.

[148] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-
key cryptosystems. Communications of the ACM, 21(2):120–126, 1978. ISSN 0001-0782. doi:
10.1145/359340.359342.

[149] Eva Rose. Lightweight bytecode verification. 1998.

[150] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant computations.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, page 1227, New York, NY, USA, 1988. ACM. ISBN 0-89791-252-7. doi:
10.1145/73560.73562.

[151] Peter R. Samson. Apparatus and method for serializing and validating copies of computer software,
February 1994. URL http://www.freepatentsonline.com/5287408.html.

[152] Zonglu Sha, Hua Jiang, and Aicheng Xuan. Software watermarking algorithm by coefficients of
equation. Genetic and Evolutionary Computing, International Conference on, 0:410–413, 2009.
doi: 10.1109/WGEC.2009.18.

[153] M. Shirali-Shahreza and S. Shirali-Shahreza. Software watermarking by equation reordering. In
Information and Communication Technologies: From Theory to Applications, 2008. ICTTA 2008.
3rd International Conference on, pages 1–4, 2008. doi: 10.1109/ICTTA.2008.4530357. URL http:

//dx.doi.org/10.1109/ICTTA.2008.4530357.

[154] Smardec. Software development and information technology offshore outsourcing company.
http://www.smardec.com/, 2008. URL http://www.smardec.com/.

[155] Smardec. Allatori java obfuscator, September 2009. URL http://www.allatori.com/.

[156] Ahpah Software. SourceAgain, 2004. URL http://www.ahpah.com/cgi-bin/suid/~pah/demo_

license.cgi. year = 2004.

182

http://mayon.actewagl.net.au/
http://www.freepatentsonline.com/5287408.html
http://dx.doi.org/10.1109/ICTTA.2008.4530357
http://dx.doi.org/10.1109/ICTTA.2008.4530357
http://www.smardec.com/
http://www.allatori.com/
http://www.ahpah.com/cgi-bin/suid/~pah/demo_license.cgi
http://www.ahpah.com/cgi-bin/suid/~pah/demo_license.cgi

[157] Jose Sogiros. Is protection software needed watermarking versus software security. http://bb-
articles.com/watermarking-versus-software-security, March 2010. URL http://bb-articles.

com/watermarking-versus-software-security.

[158] Jeremy Spinrad. Efficient graph representations. Number 19 in Fields Institute Monographs.
American Mathematical Society, Providence R.I., 2003. ISBN 9780821828151.

[159] Julien Stern, Gael Hachez, Francois Koeune, and Jean-Jacques Quisquater. Robust object water-
marking: Application to code. In Information Hiding Workshop ’99, pages 368–378, 1999.

[160] R. F. Strk, J. Schmid, and E. Brger. Java and the Java Virtual Machine: Definition, Verification
and Validation. Springer-Verlag, 2001.

[161] Sun Microsystems, Inc. Java debug interface, 2005. URL http://java.sun.com/j2se/1.5.0/

docs/guide/jpda/jdi/index.html.

[162] Smita Thaker. Software Watermarking via Assembly Code Transformations. Masters thesis, San
Jose State University, 2004.

[163] Clark Thomborson, Jasvir Nagra, Ram Somaraju, and Charles He. Tamper-proofing software
watermarks. In ACSW Frontiers ’04: Proceedings of the second workshop on Australasian infor-
mation security, Data Mining and Web Intelligence, and Software Internationalisation, page 2736,
Darlinghurst, Australia, Australia, 2004. Australian Computer Society, Inc.

[164] Raja Valle-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sundare-
san. Soot - a java bytecode optimization framework. In CASCON ’99: Proceedings of the 1999
conference of the Centre for Advanced Studies on Collaborative research, page 13. IBM Press, 1999.

[165] Various. The easter egg archive. http://www.eeggs.com/, 2009. URL http://www.eeggs.com/.

[166] Ramarathnam Venkatesan and Vijay Vazirani. Technique for producing through watermarking
highly tamper-resistant executable code and resulting watermarked code so formed, May 2006.
Microsoft Corporation, US Patent: 7051208.

[167] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh Sinha. A graph theoretic approach to
software watermarking. In Proceedings of the 4th International Workshop on Information Hiding,
2001.

[168] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., New York, NY, USA, 1996.
ISBN 0079132480.

[169] Mark Weiser. Program slicing. In ICSE ’81: Proceedings of the 5th international conference on
Software engineering, page 439449, Piscataway, NJ, USA, 1981. IEEE Press. ISBN 0-89791-146-6.

[170] Wang Yong and Yang Yixian. A software watermark database scheme based on PPCT. In
CIHW2004, 2004.

[171] J. Zhu, Y. Liu, and K. Yin. A novel planar IPPCT tree structure and characteristics analysis.
Journal of Software, 5(3):344, 2010.

[172] Jianqi Zhu, Kexin Yin, and Yanheng Liu. A novel DGW scheme based on 2D PPCT and permu-
tation. Multimedia Information Networking and Security, International Conference on, 2:109–113,
2009. doi: 10.1109/MINES.2009.177.

[173] William Zhu and Clark Thomborson. Algorithms to watermark software through register alloca-
tion. In Digital Rights Management. Technologies, Issues, Challenges and Systems, volume 3919
of Lecture notes in computer science, pages 180–191, Berlin, ALLEMAGNE, 2006. Springer. ISBN
978-3-540-35998-2. doi: 10.1007/11787952 14. URL http://dx.doi.org/10.1007/11787952_14.

[174] William Zhu and Clark Thomborson. Extraction in software watermarking. In Sviatoslav
Voloshynovskiy, Jana Dittmann, and Jessica J. Fridrich, editors, MM&Sec, pages 175–181. ACM,
2006. ISBN 1-59593-493-6. URL http://dblp.uni-trier.de/db/conf/mmsec/mmsec2006.html#

ZhuT06.

183

http://bb-articles.com/watermarking-versus-software-security
http://bb-articles.com/watermarking-versus-software-security
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/index.html
http://www.eeggs.com/
http://dx.doi.org/ 10.1007/11787952_14
http://dblp.uni-trier.de/db/conf/mmsec/mmsec2006.html#ZhuT06
http://dblp.uni-trier.de/db/conf/mmsec/mmsec2006.html#ZhuT06

[175] William Zhu and Clark Thomborson. Recognition in software watermarking. In Proceedings of the
4th ACM international workshop on Contents protection and security, pages 29–36, Santa Barbara,
California, USA, 2006. ACM. ISBN 1-59593-499-5.

184

	Introduction
	Background
	Java and the Java Virtual Machine
	Decompilation
	Software Watermarking

	Overview Of This Report

	An Evaluation of Current Java Bytecode Decompilers
	Java Decompilation Example
	The Decompilers
	Mocha
	SourceTec (Jasmine)
	SourceAgain
	ClassCracker3
	Jad
	JODE
	jReversePro
	Dava
	jdec
	Java Decompiler
	NMI Code Viewer
	jAscii

	Problems with Java Decompilation
	Casting
	Inner Classes
	Type Inference
	Control Flow
	Exceptions
	Variable Re-Use
	Arbitrary bytecode

	Empirical Evaluation
	Test Programs
	Measuring the Effectiveness of Java Decompilers
	Summary of Results

	Discussion of Results
	ClassCracker3
	Dava
	Jad
	Java Decompiler
	jdec
	JODE
	jReversePro
	Mocha
	SourceAgain
	SourceTec (Jasmine)

	Conclusion and Future Work

	A Survey of Static Software Watermarking
	Register Allocation Based Watermarks
	Background
	The QP Algorithm
	The QPS Algorithm
	The QPI Algorithm
	The Colour Change Algorithm
	The Colour Permutation Algorithm
	The Selected Colour Change Algorithm
	Fingerprinting via Register Allocation
	QP Algorithms and Public-Key Cryptography
	Conclusion

	Code Re-Ordering Watermarks
	Basic Block Re-Ordering
	Equation Re-Ordering
	Function Re-Ordering
	Constant Pool Re-Ordering
	Conclusion

	Graph Watermarking
	Encoding Watermarks in Graphs
	Static Graph Watermarking
	Dynamic Graph Watermarking
	Attacks against graph watermarks
	Tamper-proofing by Constant Encoding
	Conclusion

	Code Replacement
	Spread Spectrum Watermarking
	Conclusion

	Abstract Interpretation
	Threads
	Execution Path
	Slicing Based

	Evaluation of Static Watermarking Algorithms
	The Watermarkers
	Sandmark
	Allatori
	DashO

	The Watermark Algorithms
	The Obfuscation Algorithms
	The Jar files
	Results
	Watermarking
	Obfuscation
	Recognition
	Analysis

	Conclusion

	Current Progress and Thesis Plan
	PhD Road Map
	Thesis Plan
	Program Slicing
	Finding Watermarks

	Decompiled Program Listings
	Bytecode Analysis Tools
	Bytecode Generation/Manipulation Tools
	Java Java Bytecode Compilers
	Java Bytecode Assemblers
	Other language Java Bytecode Compilers
	Bytecode Optimisers
	Bytecode Obfuscators

	Java Class File Format
	Bytecode Instruction Set
	Stuff
	Static Single Assignment Form
	Stack-based instructions
	Stack Height
	Local Variables
	Flattening the Stack

	JLS Inconsistancies

