
An Evaluation of Static Java Bytecode Watermarking

James Hamilton and Sebastian Danicic
Department of Computing

Goldsmiths, University of London
United Kingdom

james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

Abstract—The rise in the use of the Internet and bytecode
languages such as Java bytecode and Microsoft’s Common
Intermediate Language have made copying, decompiling and
disassembling software easier. The global revenue loss due to
software piracy was estimated to be more than $50 billion in
2008. Watermarking is a technique which attempts to protect
software by inserting copyright notices or unique identifiers
into software to prove ownership. We evaluate the existing Java
static watermarking systems and algorithms by using them to
watermark bytecode files and then applying distortive attacks
to each watermarked program by obfuscating and optimising.
Our study revealed that a high proportion of watermarks
were removed as a result of these transformations both in
the commercial and academic watermarking systems that
we tested. This is further evidence that static watermarking
techniques on their own do not give sufficient protection against
software piracy.

Keywords-java; bytecode; watermarking; obfuscation; pro-
gram transformation;

I. INTRODUCTION

Software theft, also known as software piracy, is the act
of copying a legitimate application and illegally distributing
that software, either free or for profit. Legal methods to
protect software producers such as copyright laws, patents
and license agreements [1] do not always dissuade peo-
ple from stealing software, especially in emerging markets
where the price of software is high and incomes are low.
Ethical arguments, such as fair compensation for producers,
by software manufacturers, law enforcement agencies and
industry lobbyists also do little to counter software piracy.
The global revenue loss due to software piracy was estimated
to be more than $50 billion in 2008 [2].

Software watermarking involves embedding a unique
identifier within a piece of software, to discourage software
theft. Watermarking does not prevent theft but instead dis-
courages software thieves by providing a means to identify
the owner of a piece of software and/or the origin of the
stolen software [3]. The hidden watermark can be extracted,
at a later date, by the use of a recogniser to prove ownership
of stolen software. It is also possible to embed a unique
customer identifier in each copy of the software distributed
which allows the software company to identify the individual
that pirated the software. It is necessary that the watermark

is hidden so that it cannot be detected and removed. It is
also necessary (in most cases), that the watermark is robust
- that is, resilient to semantics preserving transformations
(such as optimisations or obfuscations).

Technical measures have been introduced to protect digital
media and software, due to the ease of copying computer
files. Some software protection techniques, of varying de-
grees of success, can be used to protect intellectual property
contained within Java class-files.

The Java virtual machine is a popular platform for exe-
cutable programs from languages including, but not limited
to Java. The Java virtual machine provides a platform for
which programs can be written once and run on any physical
machine for which there is a Java virtual machine. Java
bytecode is higher level than machine code and is relatively
easy to decompile with only a few problems to overcome
[4].

Encryption and obfuscation aim to either decrease pro-
gram understand or prevent decompilation, while water-
marking and fingerprinting uniquely identify applications to
prove ownership in a court of law. We present a survey of
existing Java bytecode watermarking software and evaluate
their effectiveness.

II. BACKGROUND

Watermarking techniques are used extensively in the
entertainment industry to identify multimedia files such as
audio and video files, and the concept has extended into
the software industry. Watermarking does not aim to make
a program hard to steal or indecipherable like obfuscation
but it discourages theft as thieves know that they could be
identified [5].

A. Difficulties of Software Watermarking

Software watermarks present several implementation
problems and many of the current watermarking algorithms
are vulnerable to attack. Watermarked software must meet
the following conditions:

1) program size must not be increased significantly.
2) program efficiency must not be decreased significantly.

3) robust watermarks must be resilient to semantics pre-
serving transformations (fragile watermarks, by defi-
nition, should not be).

4) watermarks must be sufficiently well hidden, to avoid
removal.

5) watermarks must be easy for the software owner to
extract.

Perhaps the most difficult problem to solve is keeping
the watermark hidden from attackers while, at the same
time, allowing the software owner to efficiently extract
the watermark when needed. If the watermark is too easy
to extract then an attacker would be able to extract the
watermark too. If a watermark is too well hidden then the
software owner may not be able to find the watermark, in
order to extract it. Some watermark tools (such as Sandmark
[6]) use markers to designate the position of the stored
watermark - this is problematic as it poses a risk of exposing
the watermark to an adversary.

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recognise
a watermark from a partial program. Semantics preserving
transformations, by definition, result in programs which
are syntactically different from the original, but whose be-
haviour is the same. The attacker can attempt, by performing
such transformations, to produce a semantically equivalent
program with the watermark removed. Redundancy and
recognition with a probability threshold may help with
these problems [7]. Ideally, software watermarks should be
resilient to decompilation-recompilation attacks, as decom-
pilation of Java is possible (though not perfect [4]).

The watermark code must be locally indistinguishable
from the rest of the program so that it is hidden from
adversaries [8]. For example, imagine a watermark which
consists of a dummy method with 100 variables - this kind
of method will probably stand out in a simple analysis of
the software (such as using software metrics techniques [9],
[10]). It could be difficult to programatically generate code
which is indecipherable from the human-generated program
code but statisical analysis of the original program could
help in generating suitable watermarks [7].

Software watermarks must be efficient in several ways:
cost of emedding, cost of runtime and cost of recognition
time.

The cost of embedding a software watermark can be
divided into two areas: developer time and embedding cost.
The former simply quantifies the time that a developer
spends embedding a watermark, while the latter quantifies
the execution time of a software watermarking tool. Em-
bedding costs are not a significant problem except in certain
cases such as live multimedia streaming.

Developer time is important in use of software watermarks
as the developer should not have to spend a large amount
of time preparing a software watermark. The complexity of
a software watermark is proportional to the resilience of the

watermark - that is, the greater amount of time a developer
spends embedding a watermark the harder it may be for an
adversary to crack. For example, a developer could spend
days introducing a subtle semantic property into the program
which is unique to the software and very hard to discover.

In the middle of the scale is a semi-automatic watermark
which involves a developer preparing a program before a
watermarking tool embeds the watermark. The preparations
could include inserting markers where watermark code
should be inserted, or creating dummy methods which water-
marks could use. Monden et al. [11] describe a watermarking
algorithm which requires the production of a dummy method
in a program for the watermark to be stored. A programmer
must create this dummy method manually and then execute
watermarking software to embed the watermark.

The cost of runtime depends on the effect that the transfor-
mations applied by the watermark have had on the size and
execution time. For example, Hattanda et al. [12] found that
the size of a program, watermarked with Davidson/Myhrvold
[13] algorithm, increased by up to 24% and the performance
decreased by up to 24%.

Dummy methods, which are not executed, will have
minimal effect on runtime cost but dynamic watermarks may
have a high runtime cost as the watermark is built during
program execution. The fidelity of watermark, ‘the extent
to which embedding the watermark detoriates the original
content’ [14], should also be taken into account for the
effects caused by watermarking, for example embedding a
watermark may introduce unintentional errors.

The ideal recognition time of a watermark will most likely
be quick but in some cases it may be important to artificially
slow watermark recognition time to prevent oracle attacks
[14]. Such attacks rely on the repetitive execution of a
recongiser thus fast recognition time helps an adversary.

B. Types of Watermark

Software watermarks can be broadly divided into two
categories: static and dynamic [15]. The former embeds the
watermark in the data and/or code of the program, while
the latter embeds the watermark in a data structure built at
runtime. Additionally, Nagra et al. define four categories of
watermark [14]:

Authorship Mark identifying a software author, or
authors. These watermarks are generally visible and
robust.
Fingerprinting Mark identifying the channel of dis-
tribution, i.e. the person who leaked the software. The
watermarks are generally invisible, robust and consist
of a unique identifier such as a customer reference
number.
Validation Mark to verify that software is genuine
and unchanged, for example like digitally signed Java
Applets. These watermarks must be visible to the

end-user to allow validation and fragile to ensure the
software is not tampered with.
Licensing Mark used to authenticate software against
a license key. The key should become ineffective if the
watermark is damaged therefore licensing marks should
be fragile.

In this paper, we evalaute static watermarking systems
which enable software authors to prove ownership of their
software and/or identify the customer responsible for the
copyright infringement. We are therefore interested in only
the first two kinds of watermarks: authorship marks and
fingerprint marks.

C. Program Transformation Attacks

Program transformation attacks on watermarked software
can be divided into three categories:

1) Additive: An additive attack involves inserting another
watermark into an already watermarked application, thus
over-writing the original watermark. This attack will usually
work if a watermark of the same type is embedded but not
necessarily if a different type of watermark is embedded
[16].

2) Subtractive: A subtractive attack involves removing
the section, or sections, of code where the watermark is
stored while leaving behind a working program. This could
be achieved by dead code elmination, statistical analysis or
program slicing.

3) Distortive: Distortive attacks involve applying
semantics preserving transformations to a program, such as
obfuscations or optimisations thus removing any watermarks
which rely on program syntax. For example, renaming
variables, loop transformations, function inlining, etc.

Both static and dynamic watermarks can be susceptible to
program transformation attacks. Myles et al. [16] conducted
an evaluation of dynamic and static versions of the Arboit
algorithm by watermarking and obfuscating test files. They
found the dynamic version to be only minimally stronger
than the static version, and both versions could be defeated
by distortive attacks.

III. EMPERICAL EVALUATION

We evaluate the existing static watermarking software
by watermarking 60 jar files with all available watermark
algorithms and then apply a distortive attack to each wa-
termarked program, by obfuscating and optimising. After
all the programs have been transformed we attempt to
extract the watermarks from the programs. We expect that
many watermarks will be lost during the transformations
and attempt to find which transformations most affect the
watermarks.

A. The Watermarkers

We are testing 14 different static watermarking algorithms
from 3 different watermarking systems: Sandmark, Allatori
and DashO. The latter two are commercial systems, while
the former is an academic open-source framework (table ??).
These are the only available systems that we could obtain
for watermarking Java programs.

1) Sandmark: SandMark [6] is a tool developed by
Christian Collberg et al. at the University of Arizona for
research into software watermarking, tamper-proofing, and
code obfuscation of Java bytecode. The project is open-
source and both binaries and source-code can be download
from the SandMark homepage [6]. We used version 3.4.0
released in 2004.

2) Allatori: Allatori [17] is a commercial Java obfuscator
complete with a watermarking system created by Smardec
[18]. The company claim that ‘if it is necessary for you to
protect your software, if you want to reduce its size and to
speed up its work, Allatori obfuscator is your choice’ [17].
We used version 2.8 released in 2009.

3) DashO: DashO [19] is a commerical Java security
solution, including obfuscator, watermarking and encrypter
- similar to Allatori. DashO is made by PreEmptive Solu-
tions [20] who claim that ‘DashO provides advanced Java
obfuscation and optimization for your application’. We used
version 6.3.3 released in 2010.

B. The Watermark Algorithms

We evaluate all the static watermarking algorithms
available to us from the 3 watermarking systems.

Sandmark contains 121 static Java bytecode watermarking
algorithms [21]:

1) Add Expression adds a bogus addition expression
containing the watermark to a class-file.

2) Add Initialization adds bogus local variables to a
method in a class-file.

3) Add Method and Field splits a watermark in two -
one half stored in the name of a bogus field, the other
half store in the name of a bogus method. The new
method accesses the field, while a randomly chosen
method calls the new method to make it seem like
they are part of the program.

4) Add Switch embeds the watermark in the case values
of a switch statement, inserted at the beginning of a
randomly chosen method.

5) Davidson/Myhrvold [13] embeds the watermark by
re-ordering basic blocks in a suitable method.

1A 13th static algorithm is included, but not counted here - Steganog-
raphy. This algorithm stores a watermark within PNG files in the program
jar file.

6) Graph Theoretic Watermark [8] embeds the water-
mark in a control-flow graph, which is added to the
original program.

7) Monden [11] embeds the watermark by replacing
opcodes in a dummy method, generated by Sandmark.

8) Qu/Potkonjak [22]–[24] embeds the watermark in
local variable assignments by adding constraints to the
interference graphs.

9) Register Types embeds a watermark by introducing
local variables of certain Java standard library types.

10) Static Arboit [16], [25] embeds a method by encod-
ing the watermark in an opaque predicate and then
appending the predicate to a selected branch.

11) Stern (Robust Object Watermarking) [26], [27] em-
beds the watermark as a statistical object by creating
a frequency vector representation of the code.

12) String Constant is a simple watermarking algorithm
which simply embeds the watermark string into the
constant pool of a class-file.

13) Allatori embeds watermarks as a sequence of push and
pop operations inserted into multiple class-file methods.

14) Dash-O Pro renames classes and inserts some
extra static code in each of the class-files.

C. The Transformation Attacks

Sandmark contains a variety of semantics preserving
obfuscations which we will use to evaluate the watermarking
systems. We also use Proguard [28] to optimise the test
programs, as another form of obfuscation. In total, there are
37 different transformations to be applied.

D. The Jar files

All the jar files that we use in the tests are plugins for the
open-source text editor jEdit [29]. These files are fairly small
(average 30KB) but represent a collection of real-world Java
software2 (see table III). The range of plugins represent a
variety of code, and were all written by different program-
mers but as they are plugins they share some characteristics.
For example, some classes may subclass jEdit’s abstract
plugin classes to use jEdit’s plugin API. All the test files
were obtained by installing jEdit and then using the built-in
plugin manager to download the plugin jar files. The average
number of classes per jar is 11, while the average number
of methods per jar is 66.

IV. RESULTS

A. Watermarking

After embedding watermarks we obtained 671 out of an
expected 840 watermarked jars. Some watermark algorithms

2we found that larger files cause problems with Sandmark’s obfuscator
resulting in crashes and/or extremely long embed times

failed to embed the specified watermark, due to error or
incompatible program jar. For example, Qu/Potkonjak could
only embed watermarks in 1 of the programs because the
class files were too small for the watermark. Allatori, String
Constant and Add Expression managed to correctly embed
watermarks in all 60 test programs - they were embedded
and recognised correctly. Only 79.9% of the expected wa-
termarked jar files were actually produced (see figure 1).

Out of the 671 watermarked jar files only 588 contained
watermarks which were successfully recognised before the
transformation attacks were applied. This means only 87.6%
of the watermarks in the watermarked jar files produced were
actually recognised (see figure 1).

(a) Watermarks Embeds

(b) Watermarks Recognitions

(c) Obfuscations

Figure 1. Watermark and Obfuscation success. Out of the 840 expected
watermarked jars, only 671 were produced by the watermarkers (a), while
only 588 of these were correctly recognised (b). Out of the 26,169 expected
attacked watermarked jars only 23,626 were produced (c).

B. Obfuscation

We obfuscated the 671 jar files with 36 obfuscations, 1
optimisation and 2 obfuscation combinations which should
have resulted in 26,169 attacked watermarked jars. Some

Transformation C
om

bo
1

C
om

bo
2

Array Folder
Array Splitter
Block Marker

Constant Pool Reorderer X
Dynamic Inliner

FalseRefactor
Integer Array Splitter

Interleave Methods X
Overload Names X X

ParamAlias
Rename Registers X X

Split Classes X
String Encoder X

Class Splitter X
Field Assignment

Method Merger
Objectify

Publicize Fields
Simple Opaque Predicates X

Static Method Bodies
Bludgeon Signatures

Boolean Splitter X
Branch Inverter

Duplicate Registers
Insert Opaque Predicates X

Irreducibility X
Merge Local Integers X

Opaque Branch Insertion X
Promote Primitive Registers X X

Promote Primitive Types
Random Dead Code
Reorder Instructions
Reorder Parameters

Transparent Branch Insertion
Variable Reassigner X

Inliner X
Proguard Optimize X X

Table I
THE COMBINATIONS OF TRANSFORMATIONS USED FOR COMBO 1 AND

COMBO 2.

algorithms failed to output some jars so we actually obtained
23,626 attacked watermarked jars using 39 semantics pre-
serving transformations. We believe this is due to bugs in the
implementation rather than a fundamental problem with the
algorithms. This means only 90.3% of the expected attacked
watermarked jar files were actually produced (see figure 1).

C. Recognition

The result of recognising the watermarks in the obfuscated
jar files are shown in table II. The number of successful
recognitions before transformations is shown in the first
column, while the remaining columns show the number of
successful recognitions after transformations.

A number of zeros can be seen throughout the table
indicating that no watermarks was recognised with that
combination of the watermark and transformation. These are
the combinations of watermark and transformation that we
are interested.

D. Analysis

By examining the table we can see that Proguard Opti-
mizer produces the best results overall - with a low number
of recognitions for all watermarkers, except String Constant.

We can also see that some of the other transformations
remove some of the other watermarks completely. We there-
fore used a combination of well performing watermarks to
remove more watermarks overall (see table I).

The results of running this combination of transforma-
tions are shown at the end of table II, in the ‘Combo 1’
column. This removes many of the watermarks, leaving
just 71 remaining and some watermark algorithms with no
remaining watermarks. We then generated ‘Combo 2’ by
selecting transformations which contained files in ‘Combo 1’
but which had the watermark removed.‘Combo 2’ removed
some more of the remaining watermarks resulting in just
53 files containing watermarks and the Add Switch, David-
son/Myhrvold, Monden and Allatori watermark algorithms
completely defeated, compared to ‘Combo 1’.

There are still 52 watermarks recognisable after Combo
2 using the ‘String Constant’ watermark algorithm but
these can easily be removed. The String Constant algorithm
creates a new, unused entry in a class-file’s constant pool
containing the watermark value. We can easily remove
unused constant pool items with a simple static analysis and
therefore remove the 52 String Constant watermarks.

The last remaining watermarked file contains an ‘Add
Method and Field’ watermark. This jar file caused the
obfuscators to crash and therefore could not be obfuscated.
We believe that this happened due to bugs in obfuscation
implementations rather than a fundamental problem with the
algorithms. We therefore suggest that this remaining water-
mark could be removed if the obfuscation implementations
were corrected.

A watermarking system can fail in two ways: it fails to
embed the watermark, or the watermark is easy to remove.
A good watermarking system is one where embedding
succeeds often and the watermark is not often removed. Our
results show that the static watermarking systems performed
badly at embedding and watermarks were easily removed.

V. CONCLUSION

We confirmed that none of the 14 static watermark algo-
rithms are resilient to semantics preserving transformations.
A combination of transformations removed all but 52 ‘String
Constant’ watermarks and 1 ‘Add Method and Field’ water-
mark from the test files. 52 of the remaining watermarks can
be destroyed by removing (or overwriting) unused constants
in a class-file’s constant pool. The last watermarked file was
rejected by some of the obfuscations and we assume that
the watermark in this file would be removed if the bugs in
the obfuscations were fixed.

Software watermarking must be supplemented with other
forms of protection [30], such as obfuscations or tamper-
proofing techniques [31], in order to better protect a program
from copyright infringement and decompilation.

Though we have not evaluated all aspects of the water-
marking algorithms, we have shown that static watermarks

O
ri

gi
na

l

A
rr

ay
Fo

ld
er

A
rr

ay
Sp

lit
te

r

B
lo

ck
M

ar
ke

r

C
on

st
an

t
Po

ol
R

eo
rd

er
er

D
yn

am
ic

In
lin

er

Fa
ls

eR
ef

ac
to

r

In
te

ge
r

A
rr

ay
Sp

lit
te

r

In
te

rl
ea

ve
M

et
ho

ds

O
ve

rl
oa

d
N

am
es

Pa
ra

m
A

lia
s

R
en

am
e

R
eg

is
te

rs

Sp
lit

C
la

ss
es

St
ri

ng
E

nc
od

er

C
la

ss
Sp

lit
te

r

Fi
el

d
A

ss
ig

nm
en

t

M
et

ho
d

M
er

ge
r

O
bj

ec
tif

y

Pu
bl

ic
iz

e
Fi

el
ds

Si
m

pl
e

O
pa

qu
e

Pr
ed

ic
at

es

St
at

ic
M

et
ho

d
B

od
ie

s

B
lu

dg
eo

n
Si

gn
at

ur
es

B
oo

le
an

Sp
lit

te
r

B
ra

nc
h

In
ve

rt
er

D
up

lic
at

e
R

eg
is

te
rs

In
se

rt
O

pa
qu

e
Pr

ed
ic

at
es

Ir
re

du
ci

bi
lit

y

M
er

ge
L

oc
al

In
te

ge
rs

O
pa

qu
e

B
ra

nc
h

In
se

rt
io

n

Pr
om

ot
e

Pr
im

iti
ve

R
eg

is
te

rs

Pr
om

ot
e

Pr
im

iti
ve

Ty
pe

s

R
an

do
m

D
ea

d
C

od
e

R
eo

rd
er

In
st

ru
ct

io
ns

R
eo

rd
er

Pa
ra

m
et

er
s

Tr
an

sp
ar

en
t

B
ra

nc
h

In
se

rt
io

n

Va
ri

ab
le

R
ea

ss
ig

ne
r

In
lin

er

Pr
og

ua
rd

O
pt

im
iz

e

C
om

bo
1

C
om

bo
2

Add Expression 60 60 60 60 57 60 60 60 57 60 60 0 28 60 60 60 60 60 60 60 24 60 60 60 60 60 59 56 60 0 7 47 60 60 59 1 10 2 0 0
Add Initialization 56 56 56 56 54 56 56 56 55 56 56 56 56 56 44 56 56 56 56 55 55 56 55 56 5 56 56 0 0 0 7 56 10 51 48 56 56 1 0 0

Add Method and Field 35 35 35 35 33 30 35 35 7 6 34 35 29 35 23 32 35 27 35 6 1
Add Switch 59 59 59 59 55 59 59 59 59 59 59 59 59 59 58 59 1 1 0

Davidson/Myhrvold 15 15 12 14 13 15 15 15 12 15 12 15 7 8 15 15 15 13 15 15 15 11 12 13 8 7 15 11 6 4 4 14 13 13 9 2 13 8 3 0
Graph Theoretic Watermark 47 47 47 47 45 45 47 47 29 47 47 47 46 47 47 47 47 47 47 1 47 47 47 47 47 33 0 47 1 0 5 47 47 47 2 47 45 0 0 0

Monden 58 56 58 56 55 58 58 58 28 58 58 58 58 58 58 58 57 58 58 7 58 58 48 55 56 31 44 25 32 44 46 56 58 58 58 58 56 7 5 0
Qu/Potkonjak 0

Register Types 51 51 51 51 49 49 51 51 50 9 51 0 15 51 32 51 51 6 51 51 5 51 51 51 51 51 51 51 51 51 51 51 51 51 51 1 8 1 0 0
Static Arboit 19 19 19 19 18 12 19 19 3 19 19 19 19 19 19 19 1 19 19 0 19 19 19 19 19 3 19 19 0 0 2 19 19 19 10 19 2 2 0 0

Stern 46 43 46 45 44 44 45 46 39 45 46 45 45 46 45 45 45 45 45 1 45 45 46 45 45 10 26 16 42 0 5 22 46 45 45 45 42 2 0 0
String Constant 60 60 60 60 57 60 55 52

Dash-O Pro 22 4 11 0 8 8 0 2 6 4 0 0 4 11 6 0 0 2 0 1 0 2 9 0 0 10 9 0 0 0 2 0 9 2 0 1 7 22 0 0
Allatori 60 60 60 60 57 54 60 60 59 60 60 59 60 60 60 60 60 60 60 60 60 59 60 60 60 60 60 60 56 60 60 60 60 59 59 60 58 1 1 0

Table II
EVALUATION RESULTS - ALONG THE TOP IS THE NAME OF THE TRANSFORMATION PERFORMED AND ALONG THE LEFT IS THE NAME OF THE WATERMARK SYSTEM.

Figure 2. The number of files in which watermarks were correctly embedded and recognised.

Filename Si
ze

(K
B

)

C
la

ss
es

M
et

ho
ds

Fi
el

ds

L
oc

al
s

Accents 18.4 6 33 16 96
Activator 21.1 17 86 47 212
Ancestor 4.9 5 16 9 48

AxisHelper 12.9 7 39 33 90
Background 11.0 6 35 26 100
BufferLocal 13.1 5 31 20 105

BufferSelector 15.2 9 44 29 110
CheckStylePlugin 4.7 3 19 9 47

CodeLint 12.4 3 19 11 82
CommentFolder 3.3 2 4 3 15

CommonControls 271.6 62 436 218 1189
ConfigurableFoldHandler 24.0 15 83 53 223

ContextHelp 16.7 2 21 48 87
ContextMenu 20.3 11 64 32 136
DBTerminal 23.6 22 101 56 203

Dict 10.9 6 40 31 89
GroovyScriptEnginePlugin 3.6 1 5 1 5

HelperLauncher 7.3 4 23 10 63
HexEdit 22.7 27 137 35 321

Hyperlinks 17.0 18 74 34 194
IncludesParser 22.3 15 51 43 123

InformSideKick 24.2 10 78 82 252
JFuguePlugin 24.7 12 51 12 84

JNAPlugin 1.9 1 3 0 3
JVMStats 4.8 4 11 16 35

JalopyPlugin 22.2 22 70 13 117
JavaFold 5.2 3 10 9 50

JavaInsight 26.6 10 52 20 237
JavaScriptShell 27.6 6 38 7 103

JavascriptScriptEnginePlugin 3.6 1 5 1 5
JcrontabPlugin 19.1 11 52 35 133

JinniConsole 7.9 5 37 13 86
LineGuides 15.3 8 57 24 156

LispPaste 8.4 7 25 20 68
MacOSX 8.9 4 29 8 94

MetalColor 9.0 4 36 40 68
MibSideKick 8.5 6 23 9 60

MouseSnap 4.6 1 8 3 19
MyDoggyPlugin 24.1 17 94 46 237

Nested 15.9 12 47 23 132
NetComponents 17.8 21 137 49 336

Optional 15.4 11 68 29 226
Outline 4.6 4 13 7 33

PerlSideKick 7.2 2 4 10 15
ProjectViewer 712.1 169 1103 523 3004

PrologConsole 17.6 3 22 7 60
RETest 16.9 6 54 31 121

RecentBufferSwitcher 10.6 6 31 9 87
RecursiveOpen 8.3 4 17 9 48

Rename 5.0 6 18 14 49
SaxonAdapter 7.6 3 20 13 67

SaxonPlugin 26.3 1 1 0 1
ScriptEnginePlugin 21.2 7 54 21 166

SendBuffer 5.5 2 7 11 34
ShortcutDisplay 10.9 9 39 18 85

Sudoku 16.8 17 62 50 221
SuperScript 27.6 14 70 39 201

SwitchBuffer 22.3 17 66 43 171
TableLayout-20050920 10.1 5 70 47 296

TomcatSwitch 17.9 7 60 45 159
Average 30.0 11 66 35 180

Table III
TEST FILE STATISTICS.

are insufficient to prove ownership of software due to their
lack of resilience to semantics preserving transformations.

A. Future Work

Further work will involve extending the evaluation to
dynamic watermarks which, in theory, should be resilient
to semantics preserving transformations. However, it has
been shown that at least one dynamic algorithm is only
minimally stronger than the static version [16]. We intend
to investigate this claim and extend the investigation to
evaluate other dynamic watermarking algorithms and their
advantages over static algorithms. Furthermore, we plan to
evaluate more factors such as runtime and embedding costs,
and stealthiness.

Additionally, we intend to look at the use of program
slicing techniques [32] in order to perform subtractive wa-
termark attacks.

REFERENCES

[1] G. Cronin, “A taxonomy of methods for software piracy
prevention,” Department of Computer Science, University of
Auckland, New Zealand, Tech. Rep., 2002.

[2] B. S. Alliance, “Sixth annual BSA and IDC global software
piracy study,” Business Software Alliance, Tech. Rep. 6,
2008.

[3] G. Myles, “Using software watermarking to discourage
piracy,” Crossroads - The ACM Student Magazine, 2004.

[Online]. Available: http://www.acm.org/crossroads/xrds10-3/
watermarking.html

[4] J. Hamilton and S. Danicic, “An evaluation of current java
bytecode decompilers,” in Ninth IEEE International Work-
shop on Source Code Analysis and Manipulation, vol. 0.
Edmonton, Alberta, Canada: IEEE Computer Society, 2009,
pp. 129–136.

[5] W. F. Zhu, “Concepts and techniques in software water-
marking and obfuscation,” PhD Thesis, The University of
Auckland, 2007.

[6] C. Collberg, “Sandmark,” Department of Computer Science,
Aug. 2004. [Online]. Available: http://www.cs.arizona.edu/
sandmark/

[7] A. Mishra, R. Kumar, and P. P. Chakrabarti, “A method-
based Whole-Program watermarking scheme for java class
files,” 2008. [Online]. Available: http://citeseerx.ist.psu.edu/
viewdoc/summary10.1.1.116.2810

[8] R. Venkatesan, V. Vazirani, and S. Sinha, “A
graph theoretic approach to software watermarking,”
in Proceedings of the 4th International Workshop
on Information Hiding, 2001. [Online]. Available:
http://www.cc.gatech.edu/fac/Vijay.Vazirani/water.ps

[9] M. H. Halstead, Elements of software science (Operating and
programming systems series). Elsevier, 1977, published:
Hardcover.

[10] Kearney, Sedlmeyer, Thompson, Gray, and Adler, “Software
complexity measurement,” Commun. ACM, vol. 29, no. 11,
p. 10441050, 1986.

[11] A. Monden, H. Iida, K. ichi Matsumoto, K. Torii, and K. In-
oue, “A practical method for watermarking java programs,”
in COMPSAC ’00: 24th International Computer Software
and Applications Conference. Washington, DC, USA: IEEE
Computer Society, 2000, p. 191197.

[12] K. HATTANDA and S. ICHIKAWA, “The evaluation of
davidsons digital signature scheme,” IEICE TRANS. FUN-
DAMENTALS, vol. E87A, no. 1, 2004.

[13] R. Davidson and N. Myhrvold, “Method and system for
generating and auditing a signature for a computer program,”
Jun. 1996, microsoft Corporation, US Patent 5559884.

[14] J. Nagra, C. Thomborson, and C. Collberg, “A functional
taxonomy for software watermarking,” in Aust. Comput. Sci.
Commun., M. J. Oudshoorn, Ed. Melbourne, Australia: ACS,
2002, pp. 177–186.

[15] C. Collberg and C. Thomborson, “Software watermarking:
Models and dynamic embeddings,” in Principles of Program-
ming Languages 1999, POPL’99, 1999.

[16] G. Myles and C. Collberg, “Software watermarking via
opaque predicates: Implementation, analysis, and attacks,” in
ICECR-7, 2004.

[17] Smardec, “Allatori java obfuscator,” Sep. 2009, 2009.
[Online]. Available: http://www.allatori.com/

[18] ——, “Smardec - software development and information
technology offshore outsourcing company,” 2008. [Online].
Available: http://www.smardec.com/

[19] “DashO,” 2010. [Online]. Available: http://www.preemptive.
com/products/dasho/overview

[20] “Preemptive solutions,” 2010. [Online]. Available: http:
//www.preemptive.com/

[21] C. Collberg, “Sandmark algorithms,” University of Arizona,
Department of Computer Science, Tech. Rep., Jul. 2002.

[22] G. Qu and M. Potkonjak, “Hiding signatures in graph col-
oring solutions,” in Information Hiding, 1999, pp. 348–367,
citeseer.nj.nec.com/308178.html.

[23] ——, “Analysis of watermarking techniques for graph color-
ing problem,” in Proceedings of the 1998 IEEE/ACM inter-
national conference on Computer-aided design. San Jose,
California, United States: ACM, 1998, pp. 190–193.

[24] G. Myles and C. Collberg, “Software watermarking through
register allocation: Implementation, analysis, and attacks,”
in International Conference on Information Security and
Cryptology, 2003.

[25] G. Arboit, “A method for watermarking java programs via
opaque predicates,” in The Fifth International Conference on
Electronic Commerce Research (ICECR-5), 2002. [Online].
Available: http://citeseer.nj.nec.com/arboit02method.html

[26] J. Stern, G. Hachez, F. Koeune, and J. Quisquater, “Robust
object watermarking: Application to code,” in Information
Hiding Workshop ’99, 1999, pp. 368–378. [Online].
Available: http://citeseer.ist.psu.edu/stern00robust.html

[27] C. Collberg and T. R. Sahoo, “Software watermarking in the
frequency domain: implementation, analysis, and attacks,” J.
Comput. Secur., vol. 13, no. 5, pp. 721–755, 2005.

[28] E. Lafortune et al., “ProGuard,” Jul. 2009. [Online].
Available: http://proguard.sourceforge.net/

[29] world-wide developer team, “jEdit - programmer’s text
editor,” 2010. [Online]. Available: http://www.jedit.org/

[30] J. Sogiros, “Is protection software needed watermarking ver-
sus software security,” http://bb-articles.com/watermarking-
versus-software-security, Mar. 2010. [Online]. Available:
http://bb-articles.com/watermarking-versus-software-security

[31] C. S. Collberg and C. Thomborson, “Watermarking,
Tamper-Proofing, and obfuscation - tools for software
protection,” in IEEE Transactions on Software Engineering,
vol. 28, Aug. 2002, p. 735746. [Online]. Available:
http://citeseer.nj.nec.com/collberg02watermarking.html

[32] M. Weiser, “Program slicing,” in ICSE ’81: Proceedings of
the 5th international conference on Software engineering.
Piscataway, NJ, USA: IEEE Press, 1981, p. 439449.

http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.cs.arizona.edu/sandmark/
http://www.cs.arizona.edu/sandmark/
http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.116.2810
http://citeseerx.ist.psu.edu/viewdoc/summary10.1.1.116.2810
http://www.cc.gatech.edu/fac/Vijay.Vazirani/water.ps
http://www.allatori.com/
http://www.smardec.com/
http://www.preemptive.com/products/dasho/overview
http://www.preemptive.com/products/dasho/overview
http://www.preemptive.com/
http://www.preemptive.com/
http://citeseer.nj.nec.com/arboit02method.html
http://citeseer.ist.psu.edu/stern00robust.html
http://proguard.sourceforge.net/
http://www.jedit.org/
http://bb-articles.com/watermarking-versus-software-security
http://citeseer.nj.nec.com/collberg02watermarking.html

	Introduction
	Background
	Difficulties of Software Watermarking
	Types of Watermark
	Program Transformation Attacks
	Additive
	Subtractive
	Distortive

	Emperical Evaluation
	The Watermarkers
	Sandmark
	Allatori
	DashO

	The Watermark Algorithms
	The Transformation Attacks
	The Jar files

	Results
	Watermarking
	Obfuscation
	Recognition
	Analysis

	Conclusion
	Future Work

	References

