
Decompiling Java

James Hamilton

May 6, 2009



Contents

1 Introduction 1

2 Decompiling Java bytecode 3
1 Java Bytecode Generation and Manipulation Tools . . . . . . . . . . . . . . . . . 4

1.1 Java → Java Bytecode Compilers . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Java Bytecode Assemblers . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Other language → Java Bytecode Compilers . . . . . . . . . . . . . . . . 12
1.4 Bytecode Optimisers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.5 Bytecode Obfuscators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Why is it easy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Why is it hard? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.1 Type Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Stack-based instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Arbitrary control flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Exceptions and Synchronisation . . . . . . . . . . . . . . . . . . . . . . . 27

4 javac bytecode vs arbitrary bytecode . . . . . . . . . . . . . . . . . . . . . . . . . 37
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Current Decompilers 44
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2 Measuring the Effectiveness of a Decompiler . . . . . . . . . . . . . . . . . . . . . 45
3 The Decompilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4 Protection for Java Bytecode 75
1 Native Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
2 Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3 Watermarking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4 Code Obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Watermarking 77
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2 Survey of Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.1 Add Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
2.2 Monden . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3 Embedding a Unique ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4 Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

1



6 Code Obfuscation 79
1 Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

1.1 Identifier Renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2 How Not To Obfuscate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

A Java Class File Format 82

B Bytecode Instruction Set 89

2



Abstract



Chapter 1

Introduction

Programmers write applications in a high-level language like Java or C which is understandable
to them but which cannot be executed by the computer. The textual form of a computer
program, known as source code, is converted into a form that the computer can directly execute.
Java source code is compiled into an intermediate language known as Java bytecode which is
not directly executed by the CPU but executed by a virtual machine. Programmers need not
understand Java byte code but doing so can help debug, improve performance and memory
usage [51].

The Java Virtual Machine is essentially a simple stack based machine which can be separated
into five parts: the heap, program counter registers, method area, Java stacks and native method
stacks [89] . The Java Virtual Machine Specification [65] defines the required behaviour of a Java
virtual machine but does not specify any implementation details. Therefore the implementation
of the Java Virtual Machine Specification can be designed different ways for different platforms
as long as it adheres to the specification. A Java Virtual Machine executes Java bytecode in
class files conforming to the class file specification which is part of the Java Virtual Machine
Specification [65] and updated for Java 1.6 in JSR202 [29].

Figure 1.1: Java Virtual Machine internal architecture [89]

An advantage of the virtual machine architecture is portability - any machine that imple-
ments the Java Virtual Machine Specification [65] is able to execute Java bytecode hence the
slogan “Write once, run anywhere” [60]. Java bytecode is not strictly linked to the Java lan-
guage and there are many compilers, and other tools, available which produce Java bytecode
[86, 49] such as the Jikes compiler, Eclipse Java Development Tools or Jasmin bytecode assem-

1



bler. Another advantage of the Java Virtual Machine is the runtime type-safefy of programs.
These two main advantages are properties of the Java Virtual Machine not the Java language
[49] which, combined, provides an attractive platform for other languages.

Compilation is the act of transforming a high-level language, such as C or Java, into a low-
level language such as machine code or bytecode. In contrast, decompilation is the reverse - the
act of transforming a low-level language into a high-level language [30]. We are concerned with
the latter, though in actual fact the two tasks are similar: both parse a source language and
transform it into another language.

The task of decompilation is much harder than compilation as a compiled program loses
a lot of information which existed in the high-level source language. Due to the difficulties in
decompilation a decompiler can perform automatic translation of some low-level source and
semi-automatic translation of other source programs [31].

The problems to be solved by a general decompiler can be divided into different categories [41]:

1. separation of code from data

2. separation of pointers from constants

3. separation of original and offset pointers

4. declaration of data

5. recovery of parameters and returns

6. analysis of indirect jumps and calls

7. type analysis

8. merging of instructions

9. structure of loops and conditionals

The decompilation of machine code requires all 9 of these tasks to be solved whereas the de-
compilation of Java bytecode requires only 3 of these tasks to be solved due to the amount of
information stored in a class file. A fourth problem caused by exceptions and synchronisation
stems from their implementation using arbitrary control flow and possibly overlapping exception
handlers.

Decompiling Java bytecode requires analysis of most local variable types, merging of stack-
based instructions and structuring of loops and conditionals. Java bytecode retains type in-
formation for fields, method returns and parameters but it does not contain type information
for local variables. This information encoded in the class file makes the task of type inference
easier compared to decompilation of machine code.

There is a fair amount of literature on decompilation but not a lot covering specifically Java
decompilation. A lot of interesting research in this subject and generally Java optimisation is
performed by the Sable Research Group1 at McGill University. They have created Soot [87] - a
Java optimisation framework which includes a Java decompiler called Dava [71].

Several commercial decompilers exists (e.g. Class Cracker) thought most have been unmain-
tained for several years.

1http://www.sable.mcgill.ca/

2



Chapter 2

Decompiling Java bytecode

The decompilation of Java bytecode involves transforming the low-level, stack based bytecode
instructions into high-level Java source. There are several main problems to solve in the de-
compilation of Java bytecode:

1. local variable typing

2. merging stack-based instructions into expressions

3. arbitrary control flow

4. exceptions and synchronisation

The remaining 6 problems for general decompilation (see page 2) do not apply for the de-
compilation of Java bytecode due to the large amount of information retained in a Java class
file.

Arbitrary Java bytecode can be generated by a number of different tools, not just Sun’s
javac Java compiler which also creates a problem for decompilationthree.

3



1 Java Bytecode Generation and Manipulation Tools

A Java virtual machine executes Java bytecode in class files conforming to the class file speci-
fication which is part of the Java Virtual Machine Specification [65] and updated for Java 1.6
in JSR202 [29]. This open specification allows tools other than Sun’s Java compiler to generate
Java bytecode.

This further complicates decompilation as the source of Java bytecode (see Figure 1, page
4) is not necessarily a Java compiler. Arbitrary bytecode can contain instruction sequences for
which there is no valid Java source due to the more powerful nature and less-restrictions in Java
bytecode. For example there are no arbitrary control flow instructions in Java but there are in
Java bytecode.

Figure 2.1: Compilation and decompilation of Java Bytecode

4



1.1 Java → Java Bytecode Compilers

A Java→ Java Bytecode compiler must take as input Java source code defined by the Java Lan-
guage Specification and output Java Bytecode defined by the Java Virtual Machine Specification
[65, 29]. There are several such compilers available besides Sun’s javac.

javac Sun’s Java compiler, javac [9], is the original Java compiler from the creators of Java. It
is now part of the open-source OpenJDK [12].

GNU Java Compiler GCJ [3] is an open-source Java compiler which compiles Java to byte-
code or native machine code. GCJ can also compile Java bytecode to machine code.

Jikes Jikes [10] is a Java compiler that originated at IBM but since 2007 development has
transferred into an open-source project hosted at sourceforge.net. Jikes is written in
C++ and strictly adheres to the Java Language Specification [47] moreso than javac - for
example extraneous semi-colons after code blocks are valid with javac but not Jikes. The
last version available via sourceforge.net is 1.22 which was released October 3, 2004. This
release does not support many of the Java 1.5, has no support for Java 1.6.

Java Compiler Kit JKit [79] is a compiler designed with the aim of teaching compilation
theory and implementation and to aid research into programming languages and compilers.
It is designed to easily allow for prototyping of Java extensions or implementation of new
languages which compile to Java bytecode.

Eclipse JDT The Eclipse Java Development Tools [45] form the basis of the Eclipse Java
IDE and includes an incremental Java compiler. The Eclipse JDT adheres to the Java
Language Specification [47] more closely than javac [38].

Janino Janino [5] is an embedded compiler, which compiles blocks of Java source, rather than a
stand-alone compiler. It is intended for runtime compilation of expressions or Java server
pages and also can be used for static analysis and code manipulation.

Kopi Java Compiler The Kopi Java Compiler [11] is part of the larger open-source Kopi
Suite which includes other tools for the generation and editing of Java class files.

JastAdd Extensible Java Compiler The JastAdd Extensible Java Compiler [6, 39] is a Java
compiler built with the JastAdd compiler compiler system [40]. As its name suggest it
is designed to be easily extensible and is built in a modular fashion. Java 5 features
have been implemented as modular extensions to a Java 1.4 compiler base to demonstrate
modularity and extensibility that is possible using JastAdd. It compares well with other
compilers and runs within a factor of three compared to javac.

The compilers listed here are strictly Java compilers which adhere (or closely adhere) to the Java
Language Specification [47] and Java Virtual Machine Specification [65, 29] but there are many
compilers which work with a superset or subset of the Java language which we aren’t interested
in at this stage [83]. Not all compilers listed support the latest version of Java (currently 1.6).

5



1.2 Java Bytecode Assemblers

A Java bytecode assembler takes written bytecode instructions (usually in the form of mnemon-
ics or a simple language) and produces a Java class file. A Java assembler may take care of such
things as constant pool generation, use of local variable names and labels. There is no standard
ASCII description language for Java bytecode provided by Sun, and different tools use different
syntax to describe Java bytecode for the assembler input. Other systems are software libraries
which provide APIs for generating and manipulating class files in Java.

ASM ASM [1] is an open-source all purpose bytecode manipulation and analysis framework
which can be used to generate or manipulate Java class files. It can be used to analyse and
transform bytecode programs [61, 28] and is used as a component in many other Java tools
[21]. It is a Java library and uses Java objects to represent class files and their attributes.
In order to generate a class file from scratch a Java application must be written which
uses the ASM libraries to create a class file and bytecode attributes to it. Figure 2.1, page
7 shows a Java program using the ASM libraries to generate a Hello World Java program.

BCEL Byte Code Engineering Library [20] is a library for manipulating and generating class
files. BCEL was originally created by Markus Dham [34] and is now an open-source
project hosted by The Apache Software Foundation. The latest version is 5.2 which was
released in June 2006 and no further work has been done on BCEL since 2006. BCEL is
very similar to ASM as they are both libraries for Java which can be used to generate and
manipulate bytecode using Java objects.

The class org.apache.bcel.util.BCELifier can be used to transform any Java class file into a
Java source file which, when compiled and executed, will use the BCEL library to generate
the original class file.

Listing 2.2, page 8 shows the ‘BCELified’ Hello World Java source.

Jasmin Jasmin [68] is a Java bytecode assembler initially written in 1996 as companion to the
book ‘Java Virtual Machine’ [67] which is now out-of-print. The original authors no longer
maintain the program and it is now hosted as an open-source project on sourceforge.net
but, as of 2006, is no longer maintained1. The Soot framework uses a modified Jasmin
assembler [87]. An extension to the Jasmin language known as JasminXT has been defined
as part of the tinapoc project [15] - a set of reverse engineering tools for Java bytecode in
early development stages2.

Jasmin takes as input a human readable bytecode representation, similar to the output
of Sun’s javap disassembler, and outputs a Java class file corresponding to the written
bytecode instructions.

Constants are written inline and Jasmin takes care of the creation of the class files constant
pool.

The standard ’Hello World’ program in Java would be represented in Jasmin source as
figure 2.3, page 9.

serp TODO http://serp.sourceforge.net/ still active?

Cojen Cojen [2] is a bytecode generation library with a primary goal of making raw Java class-
file generation easy. The library contains classes which equate to bytecode instructions.
Cojen is a fork of the no longer maintained Tea Trove bytecode library [14].

1New developers were requested on 2008-01-28 via the project forum but the last release was in 2006
2the latest version is 0.4-alpha, released Feb 05 2006

6



Listing 2.1: Hello World in ASM source (derived from ASM examples package).
import org . objectweb . asm . ∗ ;
import org . objectweb . asm . commons . ∗ ;

pub l i c c l a s s ASM {
pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {

ClassWriter cw = new ClassWriter ( ClassWriter .COMPUTE MAXS) ;
cw . v i s i t ( V1 1 ,ACC PUBLIC, ” HelloWorld ” , nu l l , ” java / lang / Object ” , n u l l ) ;

// c r e a t e s a GeneratorAdapter f o r the ( i m p l i c i t ) c on s t ruc to r
Method m = Method . getMethod (” void < i n i t> ( ) ” ) ;
GeneratorAdapter mg = new GeneratorAdapter (ACC PUBLIC,

m,
nu l l ,
nu l l ,
cw ) ;

mg. loadThis ( ) ;
mg. invokeConstructor (Type . getType ( Object . c l a s s ) , m) ;
mg. returnValue ( ) ;
mg. endMethod ( ) ;

// c r e a t e s a GeneratorAdapter f o r the ’ main ’ method
m = Method . getMethod (” void main ( St r ing [ ] ) ” ) ;
mg = new GeneratorAdapter (ACC PUBLIC + ACC STATIC, m, nu l l , nu l l , cw ) ;
mg. g e t S t a t i c (Type . getType ( System . c l a s s ) ,

” out ” ,
Type . getType ( PrintStream . c l a s s ) ) ;

mg. push (” He l lo world ” ) ;
mg. invokeVi r tua l (Type . getType ( PrintStream . c l a s s ) ,

Method . getMethod (” void p r i n t l n ( S t r ing ) ” ) ) ;
mg. returnValue ( ) ;
mg. endMethod ( ) ;

cw . v i s i tEnd ( ) ;

code = cw . toByteArray ( ) ;

FileOutputStream output = new FileOutputStream (” HelloWorld . c l a s s ” ) ;
output . wr i t e ( code ) ;
output . c l o s e ( ) ;

}
}

7



Listing 2.2: Hello World in BCEL source.
import org . apache . bce l . g ene r i c . ∗ ;
import org . apache . bce l . c l a s s f i l e . ∗ ;
import org . apache . bce l . ∗ ;
import java . i o . ∗ ;

pub l i c c l a s s Example implements Constants {

// In s t r u c t i on f a c t o ry c l a s s conta ins methods to c r ea t e
// bytecode i n s t r u c t i o n ob j e c t s .
p r i va t e In s t ruc t i onFac to ry f a c t o ry ;

// ConstantPoolGen holds the c l a s s ’ constant pool in format ion
pr i va t e ConstantPoolGen cp ;

// ClassGen r ep r e s en t s the c l a s s f i l e
p r i va t e ClassGen cg ;

pub l i c Example ( ) {
// generate a new c l a s s ( pub l i c c l a s s HelloWorld extends Object )
cg = new ClassGen (” HelloWorld ” , ” java . lang . Object ” , ”

HelloWorld . java ” , ACC PUBLIC | ACC SUPER, new Str ing [ ] { } ) ;
// c r ea t e a constant pool
cp = cg . getConstantPool ( ) ;
// i n i t i a l i s e the i n s t r u c t i o n f a c t o ry
f a c t o ry = new Ins t ruc t i onFac to ry ( cg , cp ) ;

}

pub l i c void c r e a t eC l a s sF i l e ( OutputStream out ) throws IOException {
createMethod Constructor ( ) ;
createMethod Main ( ) ;
cg . getJavaClass ( ) . dump( out ) ;

}

pr i va t e void createMethod Constructor ( ) {
I n s t r u c t i o nL i s t i l = new In s t r u c t i o nL i s t ( ) ;

MethodGen method = new MethodGen(ACC PUBLIC, Type .VOID,
Type .NO ARGS, new Str ing [ ] { } ,
”< i n i t >”, ”HelloWorld ” , i l , cp ) ;

Ins t ruct ionHand le i h 0 = i l . append ( f a c t o ry . createLoad (Type .OBJECT, 0 ) ) ;

i l . append ( f a c t o ry . c reate Invoke (” java . lang . Object ” , ”< i n i t >”,
Type .VOID, Type .NO ARGS, Constants . INVOKESPECIAL) ) ;

Ins t ruct ionHand le i h 4 = i l . append ( f a c t o ry . createReturn (Type .VOID) ) ;

method . setMaxStack ( ) ;

method . setMaxLocals ( ) ;

cg . addMethod (method . getMethod ( ) ) ;

i l . d i spo se ( ) ;
}

pr i va t e void createMethod Main ( ) {
I n s t r u c t i o nL i s t i l = new In s t r u c t i o nL i s t ( ) ;

// generate method pub l i c s t a t i c void main ( St r ing [ ] args )
MethodGen method = new MethodGen(ACC PUBLIC | ACC STATIC,

Type .VOID, new Type [ ] { new ArrayType (Type .STRING, 1) } ,
new St r ing [ ] { ” args ” } , ”main ” , ”HelloWorld ” , i l , cp ) ;

// g e t s t a t i c System . out
Ins t ruct ionHand le i h 0 = i l . append (

f a c t o ry . c r ea t eF i e l dAcce s s (” java . lang . System ” ,
”out ” , new ObjectType (” java . i o . PrintStream ”) ,

Constants .GETSTATIC) ) ;

i l . append (new PUSH( cp , ” He l lo World ” ) ) ; // ldc ” He l lo World”

// System . out . p r i n t l n (” He l lo World ”)
i l . append ( f a c t o ry . c reate Invoke (” java . i o . PrintStream ” , ” p r i n t l n ” ,

Type .VOID, new Type [ ] { Type .STRING } ,
Constants .INVOKEVIRTUAL) ) ;

// return
Ins t ruct ionHand le i h 8 = i l . append ( f a c t o ry . createReturn (Type .VOID) ) ;

// c a l c u l a t e max stack and l o c a l s
method . setMaxStack ( ) ;
method . setMaxLocals ( ) ;

// add method to c l a s s
cg . addMethod (method . getMethod ( ) ) ;
i l . d i spo se ( ) ;

}

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) throws Exception {
Example c r e a t o r = new Example ( ) ;
c r e a t o r . c r e a t eC l a s sF i l e (new FileOutputStream (” HelloWorld . c l a s s ” ) ) ;

}
} 8



Listing 2.3: Hello World in Jasmin source. Comments begin with semi-colon (;).
; the c l a s s mod i f i e r and name
. c l a s s pub l i c HelloWorld
; the super c l a s s
. super java / lang / Object

; standard i n i t i a l i z e r
; a compi le r gene ra t e s a con s t ruc to r even i f one i s not de f ined in Java

; method mod i f i e r s , name (< i n i t> i s the s p e c i a l name f o r a con s t ruc to r ) ,
; parameters ( none ) , and return type (V i s the bytecode symbol f o r void ) .
t r ea t ed
. method pub l i c < i n i t >()V

a load 0 ; push ’ th i s ’
i nvokenonv i r tua l java / lang / Object/< i n i t >()V ; invoke super con s t ruc to r .
r e turn

. end methodf igure }

; main method

; method m o d i f i e r s ( pub l i c + s t a t i c ) , name ( main ) ,
; parameters ( S t r ing [ ] a rgs ) and return type ( void )

. method pub l i c s t a t i c main ( [ Ljava / lang / St r ing ; )V
. l i m i t s tack 2 ; l i m i t methods s tack he ight to 2
. l i m i t l o c a l s 1 ; l i m i t number o f l o c a l v a r i a b l e s to 1 ( args )

; push System . out onto s tack
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
; push the constant ” He l lo World” onto s tack
ldc ” He l lo World”
; invoke System . out . p r i n t l n (” He l lo World ”)
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V

return
. end method

Cojen is another Java library, very similar to ASM and BCEL, but seems simpler - see
the Hello World example in listing 2.4, page 10.

Jamaica Jamaica, The JVM Macro Assembler, is an easy to learn assembly language for JVM
programming [4]. It takes as input a hybrid Java and Java bytecode source file as input
and outputs a class file. Class, interface and method signatures are written in standard
Java source while the method body is written in a bytecode format similar to Jasmin.
Jamaica bytecode instruction format is slighlty easier to understand than Jasmin.

For example Jamaica uses the Java standard fullstop (.) to for package hierarchies
and resolve package names (e.g. it is only neccesary to write PrintStream and not
java.io.PrintStream). Variables, fields and labels all use names rather than virtual machine
indices unlike Jasmin.

Jamaica also supports a number of macros to make bytecode programming easier, which

9



Listing 2.4: Hello World in Cojen source.
pub l i c c l a s s CojenTest {

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) throws Exception {
C l a s s F i l e c l a s s F i l e = new C l a s s F i l e (” HelloWorld ” ) ;
FileOutputStream outputF i l e = new FileOutputStream (” HelloWorld . c l a s s ” ) ;

c l a s s F i l e . addDefaultConstructor ( ) ;

TypeDesc [ ] params = new TypeDesc [ ] {TypeDesc .STRING. toArrayType ( ) } ;
MethodInfo mainMethod = c l a s s F i l e . addMethod ( Mod i f i e r s . PUBLIC STATIC,

”main ” , nu l l , params ) ;
CodeBuilder b = new CodeBuilder ( mainMethod ) ;

TypeDesc pr intStream = TypeDesc . f o r C l a s s (” java . i o . PrintStream ” ) ;

b . l o a d S t a t i c F i e l d (” java . lang . System ” , ” out ” , pr intStream ) ;
b . loadConstant (” He l lo World ” ) ;

params = new TypeDesc [ ] {TypeDesc .STRING} ;
b . invokeVi r tua l ( printStream , ” p r i n t l n ” , nu l l , params ) ;

b . returnVoid ( ) ;

c l a s s F i l e . writeTo ( outputF i l e ) ;
outputF i l e . c l o s e ( ) ;

}

}

automatically generate common bytecode instructions. For example, listing 2.6, page 11
shows how the three lines of bytecode in listing 2.5 can be condensed into one line using
the %println macro.

Listing 2.5, page 10 shows the Hello World program using Jamaica.

Listing 2.5: Hello World in Jamaica source.
pub l i c c l a s s Hel loJamaica {

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
g e t s t a t i c System . out PrintStream
ldc ” He l lo World”
i n v o k e v i r t u a l PrintStream . p r i n t l n ( S t r ing ) void

}

}

The most recently active in development bytecode assembly system is ASM, while Jasmin and
BCEL are widely used and mature systems. ASM, BCEL and Cojen are all Java libraries for the
generation and manipulation of bytecode via the use of Java objects whereas Jasmin compiles
human readable bytecode instructions into classfiles.

10



Listing 2.6: Hello World in Jamaica source using a macro.
pub l i c c l a s s Hel loJamaica {

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
%p r i n t l n ” He l lo World”

}

}

The use of Java objects for the manipulation of bytecode files will be more familar to Java
programmers but still needs a thorough understanding of the bytecode language.

Althought out-of-print ‘Java Virtual Machine’ [67] is an excellent reference for the Jasmin
software. Jamaica code is more readable than Jasmin code but not as similar to actual bytecode
due to its use of macros which can make the code easier to read. Tinapoc [15] includes a new
version 2.0 of Jasmin and an extension of the language known as JasminXT.

11



1.3 Other language → Java Bytecode Compilers

Althought the JVM was initially designed with only Java in mind there are many other lan-
guages aimed at the Java platform. Unlike Common Intermediate Language virtual machines
the Java Virtual Machine was designed from the beginning to execute only Java bytecode gen-
erated from Java source. Most of the language compilers for other languages include libraries
which help to execute features of the specific language on the JVM.

A few languages are listed here for a comprehensive, up-to-date list see [86].

Groovy Groovy is ‘an agile dynamic language for the Java Platform’. It is a scripting lan-
guage which builds on the strengths of Java and the JVM aimed at Java developers and
others familar with scripting languages. Groovy includes an interperater and a bytecode
compiler. It produces bytecode which uses a Java library for Groovy functions.

A simple Hello World program consisting of the line

println "Hello World"

produces a 700 line bytecode program3 and requires the inclusion of Groovy’s library
classes.

Groovy is in mature and still in development and it is also going standardization process
via a Java Community Process under JSR2414.

Rhino Rhino is an open-source implementation of JavaScript written in Java which also in-
cludes a compiler to Java bytecode. The compiler produces bytecode which requires the
use of the Rhino runtime library.

Scala The Scala programming language integrates the features of object orientated program-
ming with those of functional programming. There exists an interperater and compiler
written in Java and a compiler which compiles Scala code to bytecode to be executed on
a JVM.

JGNAT JGNAT is an open-source Ada compiler which compiles Ada source into Java byte-
code.

Jython Jython is a Java implementation of the Python programming langauge. Version 2.2.1
and below contain a Python to Java bytecode compiler but this is no longer maintained
and is dropped from the latest beta5 release.

3The output of javap -verbose HelloWorld was 700 lines
4http://www.jcp.org/en/jsr/detail?id=241
52.5b0, 31/10/2008

12



1.4 Bytecode Optimisers

A bytecode optimiser takes as input a Java class file, performs optimising transformations and
outputs a semantically equivilent Java class file. For example an optimiser might perform
peephole optimisation on the bytecode by replacing a set of instructions with a smaller set of
equivilent instructions.

As an example the following bytecode

iconst_1
iconst_2
iadd

could be replaced by

iconst_3

This is known as constant folding.

Soot Soot is a Java optimisation framework created by the Sable Research Group at McGill
University. It can transform class files into one of four intermediate representations of
Java (Baf, Jimple, Shimple, Grimp) which are suitable for transformation and analysis
operations. Baf is closest to bytecode, whereas Grimp is closest to Java source code.

ProGuard ProGuard [13] is an open-source Java class file shrinker, optimizer, obfuscator, and
preverifier.

JODE JODE [8] is an open-source decompiler and optimiser for Java bytecode. It is able to
decompiler Java 1.3 source and also contains an optimiser which can perform optimising
transformations on class files.

Zelix Classmaster Zelix Classmaster [16] is a commerical obfuscator and optimiser sold by
Zelix Pty Ltd.

13



1.5 Bytecode Obfuscators

A bytecode obfuscator takes a Java class file as input, performs some obfuscating transforma-
tions and outputs a semantically equivilent class file.

An simple obfuscation might be to randomise constants in a classfile constant pool. Per-
forming name randomisation is easier on a class file than a Java file because all the constants
as stored in the constant pool and are referenced by their index throughout the bytecode.

Consider the following class Randomise and the extract from it’s constant pool (Listing 2.7),
which contains a private method named sayHello. The name of this method gives away the
purpose of the method and would be useful to an attacker in understanding the source code
after decompiling.

Listing 2.7: Randomise Class.
pub l i c c l a s s Randomise {

pub l i c s t a t i c void main ( St r ing [ ] a rgs ) {
sayHe l lo ( ) ;

}

p r i v a t e s t a t i c void sayHe l lo ( ) {
System . out . p r i n t l n (” He l lo World ” ) ;

}

}

1 : CONSTANT Methodref − c l a s s i n d e x : 7 name and type index : 17
2 : CONSTANT Methodref − c l a s s i n d e x : 6 name and type index : 18
3 : CONSTANT Fieldref − c l a s s i n d e x : 19 name and type index : 20
4 : CONSTANT String : He l lo World
. . . . . . . . . . . . . . . . .
14 : CONSTANT Utf8 : sayHe l lo
15 : CONSTANT Utf8 : SourceF i l e
16 : CONSTANT Utf8 : Randomise . java
17 : CONSTANT NameAndType − name index : 8 d e s c r i p t o r i n d e x : 9
18 : CONSTANT NameAndType − name index : 14 d e s c r i p t o r i n d e x : 9
. . . . . . . . . . . . . . . . .
31 : CONSTANT Utf8 : ( Ljava / lang / St r ing ; )V

The name sayHello is stored in the constant pool at index 14 and every place that name is
mentioned in the Java source is replace by a reference to the constant pool. We can change the
string at constant pool index 14 to some random name to confuse attackers of the class file.

ProGuard ProGuard [13] is an open-source Java class file shrinker, optimizer, obfuscator, and
preverifier.

Zelix Classmaster Zelix Classmaster [16] is a commerical obfuscator and optimiser sold by
Zelix Pty Ltd.

14



2 Why is it easy?

Decompiling Java bytecode is easy when compared to decompiling machine code as there are
far fewer problems to overcome due to the amount of information contained within a class file.
Java bytecode decompilers have the following advantages over machine code decompilers [41]:

• Data is already separated from code as all the data is stored in the class files constant
pool (see listing 2.8, page 15)

• Separating pointers (references in Java) from constants is easy (e.g. some opcodes such
as aload work with references whereas iconst works with constant integers)

• Method parameter, method return and field types are stored in the class file

• There is no need to decode global data since everything is stored within class files (TODO
what is this?)

Listing 2.8: Hello World bytecode
public c lass HelloWorld extends java . lang . Object

#DATA BEGINS

const #1 = Str ing #17; // He l l o World
const #2 = Method #21.#3; // java / l ang / Ob j ec t .”< i n i t >”:()V
const #3 = NameAndType #4:#22;// ”< i n i t >”:()V
const #4 = Asciz <i n i t >;
const #5 = Asciz Ljava/ i o /PrintStream ; ;
const #6 = class #19; // java / i o / PrintStream
const #7 = Asciz java / lang /Object ;
const #8 = Asciz ( [ Ljava/ lang / St r ing ; )V;
const #9 = Asciz Code ;
const #10 = Asciz HelloWorld ;
const #11 = Asciz p r i n t l n ;
const #12 = NameAndType #11:#16;// p r i n t l n : ( Ljava / l ang / S t r i n g ; )V
const #13 = Method #6.#12; // java / i o / PrintStream . p r i n t l n : ( Ljava / l ang / S t r i n g ; )V
const #14 = class #10; // Hel loWor ld
const #15 = class #20; // java / l ang /System
const #16 = Asciz ( Ljava/ lang / St r ing ; )V;
const #17 = Asciz He l lo World ;
const #18 = Asciz main ;
const #19 = Asciz java / i o /PrintStream ;
const #20 = Asciz java / lang /System ;
const #21 = class #7; // java / l ang / Ob j ec t
const #22 = Asciz ( )V;
const #23 = Asciz out ;
const #24 = NameAndType #23:#5;// out : Ljava / i o / PrintStream ;
const #25 = Fie ld #15.#24; // java / l ang /System . out : Ljava / i o / PrintStream ;

# DATA ENDS

# CODE BEGINS

{
public HelloWorld ( ) ;

Code :
Stack=1, Loca l s =1, Arg s s i z e=1
0 : a load 0
1 : i nvok e sp e c i a l #2; //Method j ava / l ang / Ob j ec t .”< i n i t >”:()V
4 : return

public stat ic void main ( java . lang . S t r ing [ ] ) ;
Code :
Stack=2, Loca l s =1, Arg s s i z e=1
0 : g e t s t a t i c #25; // F i e l d j a va / l ang /System . out : Ljava / i o / PrintStream ;
3 : ldc #1; // S t r i n g He l l o World
5 : i nvok ev i r t ua l #13; //Method j ava / i o / PrintStream . p r i n t l n : ( Ljava / l ang / S t r i n g ; )V
8 : return

}

# CODE ENDS

15



3 Why is it hard?

Decompiling Java bytecode is relatively easy but only in comparison to decompiling machine
code. There are still several problems to overcome [71, 41]:

• Type inference for local variables

• Merging stack-based instructions into expressions

• Arbitrary control flow

• Exceptions and synchronisation

16



3.1 Type Inference

TODO: type inference general, functional programming - ML, statically typed languages (e.g
Java). type inference vs type checking

Type inference in decompilation is a general problem in decompilation ([41], etc) and is
needed to recover type information lost during the compilation process. Type analysis in Java
bytecode decompilation is easier than that of machine code decompilation due to the explicit
typing of class fields and parameters in a Java class file. It is easier to decompile CIL bytecode
as all types are explicit in the assembly files [41].

One of the first papers written on decompiling Java was a description of a decompiler named
Krakatoa [80] which focused on two problems: merging stack-based instructions into expressions
and turning arbitrary control flow into high-level Java constructs. The type-inference problem
was dismissed as trivial and solvable by well known techniques such as those used by the Java
bytecode Verifier.

In actual fact the type inference problem is not the same as that performed by the Verifer
and is NP-Hard in the worst case [46]. The type analysis performed by the bytecode Verifier
estimates the types of local variables at each program point which is used to ensure that each
bytecode instruction is operating on the correct type. For example if the Verifier encounters the
iadd opcode it will ensure that there are two integers at the top of the stack at that program
point [64]. The type inference problem for decompilation must give types to each variable that
are valid for all uses of those variables.

However, if the type inference algorithm is optimised for the common-case rather than the
worst case it is still possible to perform type analysis form most real-world code as worst-
case scenerios are unlikely in real-world code [25]. Bellamy et al. [25] provide a common-case
optimised algorithm to perform type analysis which outperforms Gangon et al.’s [46] worst-
case optimised algorithm. The algorithm relies on the assumption that multiple inheritance,
via interfaces, is rarely used in real-world Java programs which could prove a problem if their
assumption is false, or becomes false in the future.

Each method frame in the JVM contains an array of local variables referenced by index. The
possible types that can be stored in a single local variable slot are boolean, byte, char, short,
int, float, reference, or returnAddress and a pair of local variables can hold long or double.
Local variables occupy slots in the order they are declared in the Java source starting with the
method parameters, followed by other local variables. If it is an instance method slot 0 holds a
reference to the class (known in Java source by the keyword this).

Figure 2.2: Method sum showing bytecode and local variable table

Figure 2.2, page 17 shows a simple method which accepts an array of integers and returns
the sum. The Java source is shown next to the bytecode generated by javac 1.6 and below is a
conceptual diagram showing the method’s local variable table. As can be seen from the diagram
local variables are untyped. The opcodes used in the bytecode deal with integers and object
references which can be seen from the prefix of the bytecode mnemonic - i for integer and a for
object reference. The maximum stack height is 3 which is calculated at compile time by javac.
The bytecode Verifier will check at each program point that the opcode types match the type
of local variables and stack variables; it will also check that the maximum stack height does not
exceed that which has been determined by javac.
Types in Java bytecode, like Java, are divided into primitive types and reference types where

17



primitives types are either numeric types, boolean type or returnAddress type. Numeric types
are divided into integral types or floating-point types. Integral types are byte, short, int, long,
char and floating-point types are float and double. The boolean type encodes either true or
false but in actuality the JVM provides limited support for it. A Java compiler will convert
Java boolean types into int types where 0 is false and 1 is true.

Figure 2.3: The type hierarchy in Java bytecode and Java [25]

Each numeric type has a set of opcodes which act on just that type, for example iadd, ladd,
fadd, and dadd add two numeric values of their respective subtype and produce a numeric type
of the same subtype. Opcodes prefixed with a, e.g. aload, work with object references. Opcodes
prefixed with b, e.g. baload, work with bytes.

Figure 2.4, page 18 shows that during compilation the Java types boolean, short, int, char
and byte are all converted into the int type [57]. In bytecode there is no indication as to which
subtype of integer is involved. A decompiler could not retrieve the original code as there are
may be no clues as to what integer subtypes are involved as the variables aren’t used (in reality
this example is a non-problem as the variables aren’t used). Some clues which may be available
are types in method signatures. The program in listing 2.9, page 19 shows an example in which
some decompilers omit the int typecast.

Figure 2.4: 5 different types in Java are convolved in Java bytecode

It is possible for a local variable slot to take values of distinct types at different places in a
method [46] which is not possible in Java. For example listing 2.10 shows a simple valid method
in which local variable 0 is used to store an integer then a String. At byte 1 local variable 0

18



Listing 2.9: int type cast example
public class Type {

public stat ic void main ( St r ing [ ] a rgs ) {
char c = ’ a ’ ;

System . out . p r i n t l n ( ” a s c i i code f o r ” + c + ” i s ” + ( int ) c ) ;
}

}

contains a variable of type integer but at byte 3 it contains an object reference type. This is
perfectly valid bytecode and is akin to the declaration of an integer followed by the declaration
of a String in Java, but in the bytecode these two distinct variables are using the same local
variable slot.

Multiple types for local variables is valid bytecode as long as the lifetimes of the two uses
of the local variable does not overlap [57] i.e. a local variable only has the type (and value) of
the last variable stored in it.

This may be overcome by converting the bytecode to Static Single Assignment form [23, 82,
33] where all static assignments to a variable will have unique names. The possibility of multiple
types for a single local variable slot causes a problem for decompilation as each variable needs
a single type which is valid for all uses of that variable. See page 21 for more about SSA form.

Java’s restricted form of multiple inheritance, interfaces, leads to problems in finding a static
type in some cases where the code is valid but not generated directly from Java source [46].
This causes problems for some decompilers which expect javac generated code. Using an SSA
form, as in [57], may change the type hierarchy when types conflict due to interfaces [71].

Listing 2.11, page 20 (from [85]) shows a program which Dava decompiles better than Jad.
Jad will type x as Object and insert a typecast in the invocation of method m2(Comparable)
whereas Dava correctly types x Comparable. The Java Virtual Machine Specification states
that “the merged state contains a reference to an instance of the first common superclass of the
two types” in regards to the bytecode verifier - the first common superclass of Integer and String
is Object. Therefore the verifier has to insert a run-time check to ensure that both Integer and
String are of type Comparable.

Java 1.6 records the type java.lang.Comparable in m1’s StackMapTable which should make
the code easier to decompile (TODO: does it? does Dava use this?).

19



Listing 2.10: Multiple local variable types
0 : i c o n s t 0 // push 0 onto s t a c k
1 : i s t o r e 0 //pop i n t e g e r from stack , s t o r e in l o c a l 0
2 : ldc ” h e l l o ” // push S t r i n g cons tant onto s t a c k
3 : a s t o r e 0 //pop o b j e c t r e f e r e n c e from stack , s t o r e in l o c a l 0
4 : return

Listing 2.11: What is the type of x? [85]
public void m1( I n t e g e r i , S t r ing s ) {

Comparable x ;

i f ( i != null )
x = i ;

else
x = s ;

m2( x ) ;
}

public void m2( Comparable x ) {
}

public void m1( java . lang . Integer , java . lang . S t r ing ) ;
0 : a load 1
1 : i f n u l l 9
4 : a load 1
5 : a s t o r e 3
6 : goto 11
9 : a load 2
10 : a s t o r e 3
11 : a load 0
12 : a load 3
13 : i n v o k e v i r t u a l #12; //Method m2: ( Ljava / lang /Comparable ; )V
16 : return

public void m2( java . lang . Comparable ) ;
0 : return

// java 1.6
StackMapTable : number o f en t r i e s = 2

frame type = 9 /∗ same ∗/
f rame type = 252 /∗ append ∗/

o f f s e t d e l t a = 1
l o c a l s = [ class java / lang /Comparable ]

20



Static Single Assignment Form

Static Single Assignment [23, 82, 33] is a program form where each variable is assigned exactly
once. SSA essentially maps each user defined variable x into a set of variables x0, x1, x2, . . . for
each assignment to x.

Consider the following psuedo-code where the variable x has 3 values assigned to it

x = 5
x = x × 6
x = x + 1

Converting this into SSA form results in the creation of new instances of variable x for each
assignment operation

x0 = 5
x1 = x0 × 6
x2 = x1 + 1

The variable instances on path merges must ensure that they preserve the same data-flow by
assigning the correct instance of the common variable using a function usually denoted with
the φ symbol. The function φ(x, y) takes the value of x if control derived from the left arc
or y if control derived from the right. In the example below the value of y is dependent on
condition because the common variable x takes its value from either x1 or x2 depending on
whether condition is true or false.

x0 = 5

if(condition) {
x1 = x0 × 6

}else{
x2 = x1 + 1

}

y = x? + 3

Thus, in the following, we introduce a new instance x3 which takes its value from either x1 or
x2 determined by the φ function and dependent on condition.

x0 = 5

if(condition) {
x1 = x0 × 6

}else{
x2 = x1 + 1

}

x3 = φ(x1, x2)
y = x3 + 3

The bytecode from listing 2.10, page 20 could be imagined in psuedo-bytecode as

21



0: iconst_0 //push 0 onto stack
1: istore_00 //pop integer from stack, store in local 00

2: ldc "hello" //push String constant onto stack
3: astore_01 //pop object reference from stack, store in local 01

4: return

where each ‘assignment’ operation (astore and istore instructions) to local variable 0 creates
a new instance of local variable 0.

An SSA transformation would create an intermediate language between bytecode and Java
and is a good first step to decompilation of Java bytecode.

22



3.2 Stack-based instructions

Java bytecode is a stack-based language and flattening the stack-based instructions is one minor
problem that machine code decompilers do not have [41]. This problem is solved by introducing
variables to represent the stack positions.

Stack Height

Every opcode in the Java bytecode instruction set performs known operations on the stack. It
is therefore possible to calculate the maximum stack height that a method uses. For example
the instruction iconst 2 pushes one integer onto the stack. After iconst 2 is executed the stack
therefore contains exactly one more item than before iconst 2 was executed.

The bytecode below shows a list of instructions with the the type of stack operation and the
size of the stack after each instruction is executed, showing a maximum stack height of two.

0: iconst_2 push [*]
1: istore_0 pop []
2: iconst_2 push [*]
3: istore_1 pop []
4: iload_0 push [*]
5: iload_1 push [**]
6: iadd pop, pop, push [*]
7: istore_2 pop []
8: return

Local Variables

The number of local variables can be calculated for a method by adding the number of method
arguments to the number of extra local variables used in load and store operations within the
method.

The following is an instance method with 2 paramaters

public void foobar(int foo, int bar):
0: iconst_0
1: istore_3
2: iconst_3
3: istore 4
5: iload_1
6: istore_2
7: return

this means that the first three local variables are used by this, foo and bar. There are two more
more local variable slots used within the method (3 and 4) bringing the total number of local
variables to 5.

23



Flattening the Stack

The follow static method foo has a maximum stack height of 2 and uses 3 local variables. It
simply declares two variables and stores their sum in a third variable.

public static void foobar():
0: iconst_2
1: istore_0
2: iconst_2
3: istore_1
4: iload_0
5: iload_1
6: iadd
7: istore_2
8: return

We declare two variables to represent the two possible positions on the stack (s0 and s1) and
translate store and load operations into assignments by introducing 3 variables representing the
local variable slots (v0, v1, v2).

public static void foo():
s0 = 2
v0 = s0
s0 = 2
v1 = s0
s0 = v0
s1 = v1
s0 = s0 + s1
v2 = s0

24



3.3 Arbitrary control flow

The goto statement is found in many programming languages which causes the execution of a
program to jump to another position, usually labelled with an identifier or a number depending
on the language. Java bytecode has two forms of goto: conditional and unconditional.

The creators of the Java language decided to omit the goto statement from the language6

due to frequent misuse of the control in other programming languages [48]. Many computer
scientists have criticised the existence of a goto control in higher level languages, most notably
Edsger Dikjstra in his 1968 letter entitled ‘Go To Statement Considered Harmful’ [36], as it
allows programmers to easily create ‘spaghetti’ code. Despite many programmers misuse of the
goto statement other well known computer scientists, such as Knuth, have described ways in
which to use gotos effectively and efficiently [58].

Java has restricted variants of goto in the form of the break and continue statements. The
break statement is either labelled or unlabelled. The unlabelled form can be used to terminate
a loop or to terminate case statements within a switch statement. A labelled break statement
terminates the labelled statement, such as a for-loop, and is useful when using nested loops to
break the outer loop.

switch statements in Java are effectively multi-way goto statements where the execution flow
is changed based on an expression and possible values of the evaluated expression.

Due to the arbitrary control flow in Java bytecode and the more restricted high-level con-
structs in Java it can be difficult to translate Java bytecode program into Java.

Ramshaw’s goto elmination technique can be used to replace gotos in a program, if and only
if the control flow graph is reducible, by replacing them with multilevel loop exit statements [81].
The Krakatoa decompiler uses an extended version of Ramshaw’s goto elimination technique
[80].

The separate languages of Java and Java bytecode mean that many bytecode features such
as arbitrary control flow do not translate easily to Java source. For example, Java bytecode
can contain non-reducible control flow which cannot be represented in Java source requiring
techniques such as described in [54] to be applied to transform irreducible control flow graphs
to reducible control flow graphs.

TODO: more

6goto is still a reserved word in Java even though it is unused

25



Structuring Loops and Conditionals

There are several conditional jump instructions in the Java bytecode instruction set which com-
pare values on the stack, which Java if statements compile to.

The conditional jump instructions can be divided into three groups. The first group of instruc-
tions pops the first integer (a) from the stack and compares it against the constant zero.

ifeq X if(a = 0) goto X
ifne X if(a 6= 0) goto X
iflt X if(a < 0) goto X
ifgt X if(a > 0) goto X
ifle X if(a ≤ 0) goto X
ifge X if(a ≥ 0) goto X

The second group pops two integer values (a, b) from the top of the stack stack and compares
them to each other.

if_icmpeq X if(a = b) goto X
if_icmpne X if(a 6= b) goto X
if_icmplt X if(a < b) goto X
if_icmpgt X if(a > b) goto X
if_icmple X if(a ≤ b) goto X
if_icmpge X if(a ≥ b) goto X

The third group pops an object reference (a) from the top of the stack and compares it with
the special null reference.

ifnull X if(a = null) goto X
ifnonnull X if(a 6= null) goto X

In Java bytecode there are no loop statements like there are in Java. Loops are created in
bytecode by using conditional and unconditional control flow instructions.

The following while loop

int x = 5;

while(x >= 0) {
x--;

}

would be expressed in bytecode as below

0: iconst_5 push 5
1: istore_0 x = 5
2: iload_0 push x
3: iflt 12 if(x < 0) goto 12
6: iinc 1, -1 x--
9: goto 2 goto 2
12: return return

26



3.4 Exceptions and Synchronisation

An exception, as described in the Java Language Specification [47], is an error signalled to a
program by the Java virtual machine when a program violates the semantic constraints of the
language. When an exception occurs control is transferred from the point where the exception
occurred to a point specified by a programmer (the catch clause); this is known as throwing and
catching.

Figure 2.5: Java Exception Hierarchy. Unchecked exception classes are coloured grey.

Errors in Java are organised in a hierarchy where the root object is the class Throwable,
which has two direct subclasses: Exception and Error. An object must be of type Throwable
or one of it’s subclasses to be thrown.

Exception and its subclasses, except RuntimeException, are errors which are commonly
expected to occur such as an IOException that the program may wish to recover from. Run-
timeException and subclasses are different in that they are used to handle events which are not
generally expected to occur but from which recovery is possible, such as a NumberFormatEx-
ception due to wrong user input.

Error and its subclasses represent serious errors that a program cannot be expected to recover
from such as an OutOfMemoryError. They are distinct from Exception to allow programmers to
catch errors from which recovery is usually possible (Exception) and not require the inclusion
of extra code to catch errors from which recovery is usually impossible (Error) (Listing 2.12,
page 27).

Figure 2.13, page 28 shows a try-catch block with a call to the method Integer.parseInt which
accepts a string. If the string is a unicode character which represents an integer the correspoding

Listing 2.12: Structure of try-catch
try {

// t r y something
}catch ( Exception e ) {

// catch any Except ion
//don ’ t worry about Error as recovery i s u s u a l l y i m p o s s i b l e

}

27



Listing 2.13: Example of try-catch
try {

I n t e g e r . pa r s e In t ( s ) ;
}catch ( NumberFormatException e ) {

System . out . p r i n t l n ( ” Enter an i n t e g e r ” ) ;
}catch ( Exception e ) {

System . out . p r i n t l n ( ”some other e r r o r ” ) ;
}

integer is returned, otherwise a NumberFormatException is thrown. If an exception is thrown
control passes to the catch block corresponding to the class, or a super-class, of the exception
thrown. The first catch clause, in order of appearance in the source file, with a matching
type is executed - in this case if s is not an integer the message “Enter an integer” will be
displayed. The order of catch clauses is important because more than one catch clause could
handle the same exception. For example the clause catch(Exception e) {...} can also handle
the NumberFormatException as Exception is a superclass of it - subclass catch clauses must
precede superclass catch clauses.

Programmers can define their own exceptions by extending Throwable or any of its sub-
classes. The Java Language Specification recommends that all user defined exceptions extend
Exception rather than Throwable or RuntimeException because Exception and its subclasses
are checked exceptions whereas RuntimeException and its subclasses are unchecked.

A Java compiler checks that a program contains handlers for checked exceptions during
compilation so for each method which could possibly throw a checked exception there must be
a handler or the method must declare that it itself throws the exception. If a method declares
that it throws an exception it must be caught or thrown in the invoking method, and so on.

Listing 2.14, page 29 shows three methods which return a FileReader object for the spec-
ified filename. FileReader’s constructor throws a FileNotFoundException if the file specified
was not found. This a a checked exception therefore any invocation of the constructor re-
quires an exception handler or that the method doing the invoking declares that itself throws
FileNotFoundException (or a superclass of FileNotFoundException).

The first method declares that it throws a FileNotFoundException and therefore doesn’t
need to include a try-catch block. There is an exception handler at the first method’s invocation
in the main method.

The second method contains a try-catch block to handle the FileNotFoundException and
the third method will cause a compilation-time error as it does not handle or throw FileNot-
FoundException or one of its superclasses.

Error and its subclasses are unchecked as they can occur at any point in a program and it
is usually impossible to recover from them. Runtime exceptions are unchecked because many
operations could throw a runtime exception and there isn’t enough information available to the
compiler for it to determine that a runtime exception cannot occur and it would need to much
exception handling code.

Programmers can throw exceptions themselves using the throw keyword. Listing 2.15, page
29 shows a method yesOrNo which takes a string and returns true if the string contains ‘yes’
and false if the string contains ‘no’ (including combinations of upper and lower case letters). If
the string contains anything else WrongInputException is thrown.

WrongInputException is a subclass of Exception which means that it is a checked exception
therefore when the yesOrNo method is invoked an exception handler must be used or the calling
method must declare that it throws a WrongInputException.

28



Listing 2.14: Example of checked exceptions
public c lass CheckedException {

public stat ic void main ( St r ing [ ] a rgs ) {

try {try
Fi leReader f = getFi l eReader1 ( args [ 0 ] ) ;

}catch ( FileNotFoundException e ) {
// hand l e f i l e not found e x c e p t i o n

}

// r e t u rn s n u l l i f f i l e not found
Fi leReader g = getFi l eReader2 ( args [ 0 ] ) ;

}

public stat ic Fi leReader getFi l eReader1 ( St r ing f i l ename ) throws FileNotFoundException {
return new Fi leReader ( f i l ename ) ;

}

public stat ic Fi leReader getFi l eReader2 ( St r ing f i l ename ) {
try {

return new Fi leReader ( f i l ename ) ;
}catch ( FileNotFoundException e ) {

return null ;
}

}
/∗
won ’ t compi l e
p u b l i c s t a t i c F i l eReader g e tF i l eReade r3 ( S t r i n g f i l e name ) {

r e t u rn new Fi l eReader ( f i l e name ) ;
}
∗/

}

Listing 2.15: Throwing an exception
public c lass YesOrNo {

public stat ic void main ( St r ing [ ] a rgs ) {
try {

System . out . p r i n t l n ( yesOrNo ( args [ 0 ] ) ) ;
}catch ( WrongInputException e ) {

System . out . p r i n t l n ( e ) ;
}

}

public stat ic boolean yesOrNo ( St r ing s ) throws WrongInputException {
i f ( s . toLowerCase ( ) . equa l s ( ” yes ” ) ) {

return true ;
} else i f ( s . toLowerCase ( ) . equa l s ( ”no” ) ) {

return fa l se ;
} else{

throw new WrongInputException ( ” found ” + s + ” , expected yes or no . ” ) ;
}

}

}

public c lass WrongInputException extends Exception {
WrongInputException ( ) { super ( ) ; }
WrongInputException ( St r ing s ) { super ( s ) ; }

}

29



Exceptions in Java bytecode

Java bytecode contains the necessary information to implement exceptions as specified by the
Java Language Specification. Every method which contains a try-catch block in Java has an
exception table attribute attached which includes the ranges of bytes for which to catch ex-
ceptions, the byte at which the exception handler starts and the type of exception. Figure
2.6 shows the bytecode, generated by javac 1.6, for listing 2.13, page 28 with highlighted try-
catch sections. It contains two entries in the exception table corresponding to the two types of
exception which are to be caught.

Figure 2.6: Java bytecode for listing 2.13, page 28 with highlighted try-catch sections.

The first exception table entry lists an exception handler for the type NumberFormatExcep-
tion between bytes 0 (inclusive) to 5 (exclusive) and the second entry lists an exception handler
for the type Exception between bytes 0 (inclusive) to 5 (exclusive). The Java Virtual Machine
searches the exception table starting at the top for the first matching entry for the type of
exception that was thrown. So if a NumberFormatException is thrown control is transferred to
byte 8 and if an Exception or a subclass excluding NumberFormatException is thrown control
is transferred to byte 20.

If no matching exception handler is found the method completes abruptly, the method
frame is discarded and the exception is re-thrown in the invokers method frame and so on. If
no matching exception handler is found in the method execution chain the thread within which
the exception was thrown is terminated.

The first opcode of an exception handler is always an astore instruction which stores the
Throwable object which should be on the top of the stack into some local variable slot. The
bytecode verifier must check that a Throwable object will be on the stack at the beginning of
an exception handler section.

An exception is thrown in bytecode using the athrow opcode which pops a Throwable
object from the stack and throws it.

30



try-finally

The finally clause of a try statement is offered to programmers to guarantee the execution even
if the try block completes abrupbtly. The subroutine for the finally clause is invoked at each
exit point of a try block and its associated catch block. The purpose of a finally clause is to
provide a gaurented execution of code no matter if the try block exectued correctly or not.
This allows ’clean-up’ code to be executed such as closing of database connections or deleting
temporary files which will be executed even if the try block completes abruptly.

Listing 2.16 shows an example of the try-finally construct and the output produced shown
below the code. The finally clause is executed after the try block and if the try block completes
abruptly, e.g. with a return, break or throwing of an exception, the finally block is still executed
immediately after the try block exits.

Figure 2.8, page 35 shows the bytecode produced by javac 1.6 along with a control flow
graph for lising 2.16, page 33.

Finally sections are coloured green, try areas are coloured blue and the catch exception
handler is shown in black. All exit points from a blue area enter into a green area. Byte 5 exits
a try section and imediately enters a finally section, where bytes 0 - 5 are the try section from
the original program.

The JVM also watches for exceptions being thrown from bytes 0 - 5 which is indicated
by being enclosed inside a blue section. If an exception is thrown within this section control
is transfered to byte 19 which is the beginning of the exception handler. Byte 19 leads to
another copy of the finally section. Both exit routes from bytes 0 - 5 (throwing an exception,
or continuing execution from byte 5) execute a finally section.

Byte 19 is the opcode astore 1 which expects to find an object reference to a Throwable
object on the top of the stack. If this is not the case it will itself throw an exception and catch
it itself. The next opcode in the sequence begins the second finally section, which is inside the
catch section.

The original Java source did not contain a catch clause but one is generated by the compiler
to enable the finally clause to be executed if an exception is thrown. If the catch clause was
not inserted the method would complete abruptly and the exception would be re-thrown in the
invokers method frame without invoking the finally clause.

The exception handler in this method serves the purpose of executing the finally clause and
re-throwing the exception that it caught.

The finally clauses is represented in bytecode either by using subroutines or by inlining
the subroutines whereever the subroutine would be invoked. Pre-1.4.2 releases of javac used
subroutines to implement finally clauses while later versions use inline finally clauses. The Java
Virtual Machine still supports Java subroutines but Sun’s Java bytecode generation tools have
not produced them since java 1.4.2.

Other tools may still produce code with subroutines as it is still supported by the Java
Virtual Machine, for example the Jikes compiler produces bytecode with subroutines (see Figure
2.9, page 36).

31



Java Bytecode Subroutines

Java bytecode subroutines, like subroutines in any other programming language, were designed
to allow code re-use for the implementation of finally clauses. For each exit point in a try clause
the same finally block must be executed which seems to suggest subroutines would be a good
idea to implement this. Java 1.4.2 and above repeat the finally clause bytecode at every try
exit point rather than using subroutines. This has the disadvantage that the code size is much
bigger than when using subroutines but data flow analysis is much simplified. It also means that
bytecode verification is simplified as the verifier performs a form of data flow analysis on the
bytecode. However, bytecode produced by javac <1.4.2 and other compilers could still contain
subroutines.

Figure 2.9, page 36 shows bytecode produced by Jikes for listing 2.16 along with its control
flow graph. There is only one finally section (bytes 17 - 26, enclosed by green lines) in this
version of the bytecode - this is the Java subroutine.

Bytes 0 - 5 and 28 represent the try section of the original Java program. The two ways
of exiting this block are continuing execution after byte 28 or throwing an exception. Byte 28
invokes the jsr and the exception handler for begins at byte 11.

The exception handler is bytes 11 - 16. The purpose of the exception handler is to store a
thrown exception, call the finally jsr and re-throw the stored exception. Byte 12 in the exception
handler invokes the finally jsr.

The jsr opcode takes a two-byte operand indicating the offset from the jsr instruction to
the subroutine. When the jsr opcode is executed the address of the next opcode is pushed onto
the stack and control is passed to the jsr specified by the operand.

The first instruction of a finally clause pops the stack and stores the return address (bytecode
type returnAddress) in a local variable (astore 1 in Figure 2.9).

The ret opcode takes one operand that is the index of the local variable slot where the return
address is stored. Execution then continues at the address loaded from the local variable slot
(slot 1 in Figure 2.9).

Figure 2.9 has an overlapping try/catch section which causes difficulties for decompilers.

Subroutines are Polymorphic

Java subroutines are polymorphic over local variables which they do not use. Consider the Java
program in listing 2.17 and (possible) bytecode for the program in listing 2.18, page 34.

The finally jsr begins at byte 21, ends at byte 26 and is called from three places in the
method - bytes 7, 16 and 28. When the jsr is called at byte 7 local variable 1 should contain
an integer value but when the jsr is called at byte 16 local variable 1 should contain a object
reference value. The jsr is called with different types of variables in local variable slots at
different points in the program.

Subroutines are not polymorphic over the types of variables that they use, for example local
variable 0 must contain an integer type as bytes 22 and 25 load and store an int from local
variable 0.

The bytecode was generated by jikes and slightly modified to demonstrate our point as the
original output produced code which used an extra local variable than shown so the problem
didn’t occur. The Java Virtual Machine does not enforce any measures to ensure that local
variables only take on one type and even if all compilers created code which only used local
variable slots for one type the Java Virtual Machine would still accept other programs.

32



Figure 2.7: Java bytecode control flow graph for listing 2.13, page 28 with highlighted try-catch
sections.

Listing 2.16: Example of Try-Finally
try {

System . out . p r i n t l n ( ” try ” ) ;
// re turn or break or throw e x c e p t i o n

} f ina l ly {
System . out . p r i n t l n ( ” f i n a l l y ” ) ;

//CLEAN UP HERE e . g . c l o s e database connec t ions
}

output :

try
f ina l ly

Listing 2.17: Try Finally
public stat ic int t e s t ( int i ) {

try {
i f ( i == 5) return 5 ;

} f ina l ly {
i = i + 1 ;

}

return i ;

}

33



Listing 2.18: possible bytecode for TryFinally listing 2.17
0 : i l o a d 0 // push i onto s t a c k
1 : i c o n s t 5 // push 5 onto s t a c k
2 : i f i cmpne 12 // i f i != 5 goto 12
5 : i c o n s t 5 // push 5 onto s t a c k
6 : i s t o r e 1 //pop i n t from stack , s t o r e in l o c a l 1
7 : j s r 21 // push 10 ( returnAddress ) onto s tack , jump to 21

10 : i l o a d 1 // push i n t in l o c a l 1 onto s t a c k
11 : i r e t u r n //pop i n t from s t a c k and re turn i t

12 : goto 28

// beg in catch
15 : a s t o r e 1 //pop o b j e c t r e f e r e n c e from stack , s t o r e in l o c a l 1
16 : j s r 21 // push 19 ( returnAddress ) onto s tack , jump to 21
19 : a load 1 // push o b j e c t r e f e r e n c e in l o c a l 1 onto s t a c k
20 : athrow //pop e x c e p t i o n from s t a c k and throw i t

//end catch

// beg in j s r
21 : a s t o r e 2 //pop returnAddress from stack , s t o r e in l o c a l 2
22 : i l o a d 0 // push i n t from l o c a l 0 onto s t a c k
23 : i c o n s t 1 // push 1 onto s t a c k
24 : iadd //add i and 1
25 : i s t o r e 0 //pop i n t from s t a c k and s t o r e in l o c a l 0
26 : r e t 2 //jump to returnAddress in l o c a l 2

//end j s r

28 : j s r 21 // push 31 ( returnAddress ) onto s tack , jump to 21
31 : i l o a d 0 // push l o c a l 0 onto s t a c k
32 : i r e t u r n //pop i n t from s t a c k and re turn i t

Due to inconsistencies in the Java Language Specification and the Java Virtual Machine
Specification there are irregularities between some Java source files and their bytecode coun-
terparts. The try-finally construct is a source of such problems. Listing 2.19, page 37 shows
Java source which, when compiled with Jikes to Java 1.4 compatible bytecode, results in being
rejected by the JVM [85]. If compiled with javac 1.6 the code will execute though some entries
in its StackMapTable are marked bogus (TODO: what does this mean?).

Both jad and Dava are unable to decompile the bytecode for listing 2.19, page 37 (Figure
2.20, 41).

34



Figure 2.8: Java 1.6 (produced with javac 1.6) bytecode control flow graph for listing 2.16, page
33 with highlighted try-catch-finally sections.

35



Figure 2.9: Java 1.4 (produced with Jikes) bytecode control flow graph for listing 2.16, page 33
with highlighted try-catch-finally sections.

36



Listing 2.19: Legal Java source which produces illegal bytecode [85]
stat ic int t e s t ( boolean b) {

int i ;

L : {
try {

i f (b) return 1 ;
i = 2 ;
i f (b) break L ;

} f ina l ly {
i f (b) i = 3 ;

}
i = 4 ;

}

return i ;
}

4 javac bytecode vs arbitrary bytecode

The design of a compiler is made easier if a decompiler only has to decompile code produced
by Sun’s javac Java compiler as it mostly means inverting a known compilation strategy [71].
javac is open-source so developers can see the implementation of the compiler and relatively
easily invert it. Of course there are still the problems listed in section 3 to overcome. Many of
the available Java decompilers use this strategy (TODO: citation?).

The Java bytecode Verifier and, from version 1.6 onwards, the Java bytecode Checker check
the validilty of Java bytecode as a matter of program security. This bytecode validation phase
ensures that programs are ’well-behaved’. The verification process does not require that a
program is compiled with javac and it is possible to create class files which no Java compiler
can produce yet they pass the Verifier with flying colours [63]. This has caused security concerns
since the early days of Java.

The decompilation of arbitrary, verifiable bytecode is more difficult than that of decompiling
javac produced bytecode due the ability to create or change class files in ways that are able
to pass verification but do not contain expected bytecode. The decompilation of such arbitary
bytecode causes many Java decompilers to fail which promoted the development of Dava [71] -
a decompiler designed to deal with arbitrary bytecode.

As an example javac produces bytecode which leaves the stack height the same before and
after any statement. This is not a requirement of the Verifier and any classfiles which do not
follow this break certain decompilers [41]. Some of the early decompilers are fooled by the
insertion of a pop opcode at the end of a method as this is unexpected even though it passes
the Java Verifier.

One source of the problem of arbitrary bytecode is that the class file format is entierly
independent of the Java language and bytecode is more powerful than the Java language [63].
For example in the Java Virtual Machine specification [65] in relation to exception handling
it list the conditions with which javac produces exception handling bytecode but it notes that
there are no restrictions enforced by the Verifier to check these conditions and suggests this
does not pose a threat to the integrity of the JVM! (JVM!). Therefore unexpected exception
handling code can be written and still pass the verification process.

Tools such as bytecode optimisers and code obfuscation change bytecode which can result

37



Figure 2.10: Bytecode resulting from compilation of listing 2.19, page 37. Left-hand-side com-
piled with jikes (Java 1.4), right-hand-side compiled with javac 1.6. Blue sections indicate
exception table entries.

38



in verificable bytecode which doesn’t easily translate to syntatically correct Java source code.

39



5 Conclusion

40



Listing 2.20: Jad decompiler output for listing 2.19, page 37 (compiled with javac 1.6)
stat ic int t e s t ( boolean f l a g )

{
int i ;
i f ( ! f l a g )

break MISSING BLOCK LABEL 14 ;
i = 1 ;
byte byte0 ;
i f ( f l a g )

byte0 = 3 ;
return i ;
byte byte1 = 2 ;
i f ( f l a g )
{

i f ( f l a g )
byte1 = 3 ;

break MISSING BLOCK LABEL 49 ;
}
i f ( f l a g )

byte1 = 3 ;
break MISSING BLOCK LABEL 47 ;
Exception except ion ;
except ion ;
i f ( f l a g )

byte1 = 3 ;
throw except ion ;
byte1 = 4 ;
return byte1 ;

}

41



Figure 2.11: Control flow graph for javac 1.6 generated bytecode of listing 2.19, page 37.

42



Figure 2.12: Control flow graph for jikes (Java 1.4) generated bytecode of listing 2.19, page 37.
43



Chapter 3

Current Decompilers

1 Introduction

There are several decompilers for Java bytecode available - commercial, free and open-source.
There are many that are unmainted such as Mocha, one of the first Java decompilers. Most
Java decompilers are aimed at decompiling bytecode generated by a Java compiler (especially
javac) and only one decompiler, Dava, aims to decompile arbitrary bytecode. This distinction
between two sets of decompilers is important as Java bytecode can be generated or manipulated
by software other than a compiler. Even simple changes to a Java class file can cause many
decompilers to fail even though the bytecode is syntactically, semantically and verifiably correct.

The portability and security of the Java Virtual Machine makes the platform attractive to
developers of other languages as an execution platform. This had led to the development of
Java bytecode compilers for languages other than Java. Java bytecode generated in this way
is unlikely to generate bytecode in the same way as a Java compiler and causes decompilers to
fail. Note that the combination of a language X to bytecode compiler and a bytecode to Java
compiler provides a translation system for language X to Java.

In this chapter we present an evaluation of existing commercial, free and open-source de-
compilers and attempt to measure their effectiveness using a series of test programs.

We base this chapter on a survey performed in 2003 [42] which tested 9 decompilers with a
range of test programs. Some of the originally tested decompilers have been updated, some are
now unavailable and there are also some new decompilers. We perform the original tests with
some new decompilers and re-test other decompilers with the latest version of Java class files.
We also add some of our own tests which add some decompilation problem areas which were
not included in the original survey.

44



2 Measuring the Effectiveness of a Decompiler

The output of a Java decompiler can, crudely, be divided into three categories:

1. semantically and syntactically correct,

2. syntactically correct and semantically incorrect and

3. syntactically incorrect.

Clearly, a decompiler which produces output of the first category is desirable. The effectiveness
of a Java decompiler, depends heavily on how the bytecode was produced. Arbitrary bytecode
can contain instruction sequences for which there is no valid Java source due to the more powerful
and less-restrictive nature of Java bytecode. For example there are no arbitrary control flow
instructions in Java but there are in Java bytecode. In fact, many Java bytecode obfuscators
rely on the fact that most decompilers fail when encountering unexpected, but valid, bytecode
sequences [24].

Naeem et al. [75] suggest using software metrics [52, 56] for measuring the effectiveness of
decompilers. They compare the output of several decompilers against the input programs using
software metrics. Software metrics are a good measure of the complexity of the output of a
decompiler however they cannot quantify the effectiveness of the general output of a decompiler.

Decompilers produce output of varying degrees of correctness and some produce no output
at all. Comparing program metrics of a source program to a syntactically incorrect output
program could prove difficult as it may require parsing of a syntactically incorrect program.
Class files generated using an assembler or other language to bytecode compiler also present a
problem for this suggested technique as the output Java source has no equivalent input Java
source to be compared against.

For each program, decompiler pair, we give a score between zero and nine (see Figure 3.1).
A score of 0 is a perfect, or good, decompilation whereas 9 means that the decompiler failed
and no output was produced.

The first two categories, 0 and 1 indicate output which is both syntactically correct Java
and semantically equivalent to the original. Category 1 programs, however contain code which
is less readable (e.g. excessive use of labels, while loops instead of for loops etc) and/or code
for which no type inference has been performed.

Programs classified as 2, 3, 4 indicate varying levels of syntactically incorrect programs. A
category 2 program indicates a program with small syntax errors, such as a missing variable
declaration, that can be easily corrected to produce a semantically correct program. Category
3 programs contain syntactic errors which are harder to correct, such as programs with goto
statements (which do not exist in Java), and category 4 programs contain extreme syntax errors
which are very difficult or impossible to correct.

Programs classified as 5, 6, 7 are syntactically correct but are not semantically equivalent
to the input program. These categories of programs are worse than syntactically incorrect
programs as they re-compile without error and may contain subtle semantic errors which are
not obvious, thus large programs in these categories would require a lot of testing to ensure
their correctness. Programs in category 5 contain minor semantic errors which when corrected
produce a program semantically equivalent to the input program. Category 6 and 7 contain
harder to correct semantic errors and indicate programs that are dramatically semantically
different from the input program.

Programs classified as category 8 are incomplete programs which are not decompiled in their
entirety, for example a program which is missing inner classes.

45



Score semantics syntax output result examples
0 correct correct semantically and syntacti-

cally correct program with
perfect/good source code
layout

perfect decompilation

1 correct correct semantically and syntacti-
cally correct program with
‘ugly’ source code layout
and/or no type inference

unreconstructed con-
trol flow statements,
unreconstructed string
concatenation, unused
labels, no type inference

2 incorrect incorrect easy to correct syntax
errors which produce a
semantically correct pro-
gram

boolean typed as int, miss-
ing variable declaration

3 incorrect incorrect difficult (but possible)
to correct syntax errors
which produce a semanti-
cally correct program

code with goto statements

4 incorrect incorrect very difficult (or nearly
impossible) to correct syn-
tax errors required to pro-
duce a semantically cor-
rect program

invalid variable use, obvi-
ously incorrect code, mas-
sive source re-write re-
quired

5 incorrect correct easy to correct semantic
errors which produce a
semantically correct pro-
gram

missing typecasts

6 incorrect correct difficult (but possible) to
correct semantic errors
which produce a semanti-
cally correct program

incorrect control flow

7 incorrect correct very difficult (or nearly
impossible) to correct se-
mantic errors required to
produce a semantically
correct program

incorrectly nested try-
catch blocks, massive
source re-write required

8 incorrect incorrect incomplete decompilation missing large sections
of source, missing inner
classes

9 Fail Fail decompiler fails upon exe-
cution/produces no source
output

decompiler fails to parse
arbitrary bytecode

Figure 3.1: Decompilation correctness classification

Category 9 indicates that a decompiler failed to produce any output at all, and most likely
failed to parse the input file. Problems could occur due to arbitrary bytecode or the latest Java
class files which decompilers are not expecting.

46



3 The Decompilers

The following decompilers were tested:

Mocha [88], released as a beta version in 1996, was one of the first decompilers available
for Java along with a companion obfuscator named Crema. Mocha can only decompile earlier
versions of Java as it is an old program. It is not useful nowadays except for simple programs.
Mocha is obsolete but is still available on several websites as the original license permitted its
free distribution.
SourceTec (Jasmine) [84], also known as Jasmine, is another unmaintained old compiler
which is a patch to Mocha. The installation process involves providing Mocha’s class files which
are then patched by SourceTec (Jasmine).
SourceAgain [22] was a commercial decompiler from Ahpah Software, Inc. It is no longer
sold or supported though they keep a web based version of their decompiler available on their
website.
ClassCracker3 [66] is another commercial decompiler which seems not to have been updated
for at least four years. An evaluation version of the program is available at the Mayon Software
Research’s website which states that it will decompile the first 5 methods of a Java class file.
Jad [59] is a popular decompiler that is free for non-commercial use but is no longer main-
tained. It is a closed source program written in C. The last update for Linux and Windows
version for Jad was in 2001, while a small update added an OS X version in 2006. Jad is used as
the back-end by many decompiler GUIs [59] including an Eclipse IDE plug-in named JadClipse
[50].
JODE [53] is an open-source decompiler that also includes a bytecode optimiser. The latest
version 1.1.2-pre1 was released February 24, 2004.
jReversePro [62] is an open-source disassembler and decompiler project which is currently at
version 1.4.2 though hasn’t been updated for several years.
Dava [69, 76, 74, 70, 71] is a decompiler which is part of the Soot Java Optimisation Framework
[87] from the Sable Research Group1 at McGill University in Montreal, Quebec, Canada. Soot
is under constant development at the Sable Research Group and the latest release was version
2.3.0 on June 3, 2008.
jdec [26] is an open-source decompiler written in Java which was last released at version 2.0 in
May, 2008. jdec is aimed at the decompilation of bytecode generated by Sun’s javac compiler
and therefore will probably have problems decompiling the arbitrary code.
Java Decompiler [37] is a free Java decompiler aimed at decompiling Java 5 and above class
files. It is in its early stages, at only version 0.2.7, and has been in development for about a
year.
NMI Code Viewer was included in the original survey with results ‘startingly similar’ to Jad
[42]. We do not include this (unmaintained) decompilar as, in actual fact, it is a front-end for
Jad [59].
jAscii was a commercial decompiler though the company has now gone out of business. In
the tests jAscii performed similarily, though slightly better, than SourceTec (Jasmine). jAscii
supports Java 2 classfiles and inner classes unlike SourceTec (Jasmine) and is able to decompile
the Usa inner class test program correctly. This decompiler is obsolete and we could not obtain
jAscii for re-testing.

1http://www.sable.mcgill.ca/

47



decompiler type status 2003 version current version last update
Mocha free obsolete 0.1b 0.1b 1996

SourceTec commercial obsolete 1.1 1.1 1997
SourceAgain commercial obsolete 1.10j 1.1 2004

Jad free unmaintained 1.5.8e 1.5.8e 2001
JODE open-source unmaintained unknown 1.1.2-pre1 2004

ClassCracker3 commercial obsolete 3.01 3.02 2005
jReversePro open-source unmaintained 1.4.1 1.4.2 2005

Dava open-source current 2.0.1 2.3.0 2008
jdec open-source current N/A 2.0 2008

Java Decompiler free current N/A 0.2.7 2008

Figure 3.2: Decompilers: Some of the currently available decompilers have, since the original
survey [42] in 2003, been upgraded, become unmaintained or obsolete. There are two new
decompilers, jdec and Java Decompiler which have become available since 2003. Many commer-
cial Java bytecode decompilers have become obsolete and the currently maintained decompilers
are open-source and/or free. In the original survey JODE was determined to be the best by
decompiling 6 out of 9 programs correctly, closely followed by Jad and Dava.

4 Tests

Different Java bytecode decompilation problems are tested using programs taken from different
sources which each provide a specific area to test.

The original tests showed that different decompilers are sometimes better in different areas
but no decompiler passed all the tests [42]. Of the decompilers tested in the original survey,
JODE performed the best by correcctly decompiling 6 out of the 9 test programs, with Dava
and Jad close behind.

In our tests we include two types of Java class file: those generated by javac and those
generated by other tools. Java source files are compiled with javac version 1.6.0 10. Arbitrary
Java class files include three hand-written using the Jasmin assembler version 2.1, one optimised
using the Soot Framework and one compiled by JGNAT. We use the test programs from the
original survey, where possible, and also extend the evaluation to include more problem areas
such as the correct decompilation of try-finally blocks and local variable slot re-use. The Java
class files will be decompiled using each decompiler and the result will be classified into one of
our ten categories of decompiler effectiveness.
The class files considered were:

Fibonacci is a trivial test for a decompiler. It is a fairly simple program to output the Fi-
bonacci number of a given input number.
Casting [77] is a simple program to test if a decompiler can correctly detect the need to cast
a char to an int.
InnerClass [77] is a simple program containing inner classes to test if a decompiler can handle
inner classes.
TypeInference [71] is a program which tests a decompiler’s ability to perform type inference
for local variables. A specific variable in the program is difficult for a decompiler to type because
it depends on the value of another variable. The original paper [71], written by the developers
of Dava, tested three different decompilers against Dava. They showed that their decompiler
could correctly type the variables whereas the other decompilers failed to do so.
TryFinally is a simple test to determine whether decompilers can decompile the implementa-
tion of try-finally blocks using inline code instead of Java bytecode subroutines. A lot of the

48



old decompilers will be expecting the use of subroutines for try-finally blocks but javac 1.4.2+
generates inline code for finally blocks rather than using subroutines.
ControlFlow [71] is a program which tests a decompilers handling of control flow.
Exceptions [71] contains two intersecting try-catch blocks. The intersecting try-catch block is
allowed in Java bytecode but would not be generated by a Java compiler - the program here
is created using Jasmin. The program used in the original tests is incorrect and Dava, which
should be able to decompile the program, exits with a null pointer exception. A re-written
version is used in our tests based on the call graph in the original paper [71].
Optimised was generated by using the Soot optimiser on the TypeInference test program. An
example of an optimisation that has been performed is the removal of the dup opcode (which
duplicates the value on the top of the stack) and replacing it with load and store instructions.
VariableReUse re-uses the local variable slot 0 in the main method. At the start of the
method local variable slot 0 is of type String[] but it is then re-used as type int. A compiler
would not generate such code that we created using Jasmin. Multiple types for local variables
is valid bytecode as long as the lifetimes of the two uses of the local variable does not overlap
[57] i.e. a local variable only has the type (and value) of the last variable stored in it.
Ada [44] is an implementation of the game Connect Four originally written in Ada and com-
piled with JGNAT to Java bytecode. This program provides an example of a source language
other than Java for a Java decompiler to handle. Such programs potentially contain code which
cannot easily be decompiled to Java source due to unexpected bytecode sequences generated
by a non-Java to Java bytecode compiler. The original survey used a different Ada program
compiled to Java bytecode which we could not obtain.

49



Listing 3.1: Fibonaci test program [18]
class Fibo {

private stat ic int f i b ( int x ) {
i f ( x > 1)

return ( f i b ( x − 1) + f i b ( x − 2 ) ) ;
else return ( x ) ;

}

public stat ic void main ( St r ing args [ ] ) throws Exception {
int number = 0 , va lue ;

try {
number = I n t e g e r . pa r s e In t ( args [ 0 ] ) ;

} catch ( Exception e ) {
System . out . p r i n t l n ( ” Input e r r o r ” ) ;
System . e x i t ( 1 ) ;

}
value = f i b ( number ) ;
System . out . p r i n t l n ( ” f i b o n a c c i ( ” + number + ” ) = ” + value ) ;

}

}

Listing 3.2: Casting test program
from Decompil ing Java chapter 1
public class Casting {

public stat ic void main ( St r ing args [ ] ) {
for (char c =0; c < 128 ; c++) {

System . out . p r i n t l n ( ” a s c i i ” + ( int ) c + ” charac t e r ”+ c ) ;
}

}
}

Listing 3.3: Inner class test program
// from the book Decompil ing Java , t h i s time chapter 3
public class Usa {

public St r ing name = ” Det ro i t ” ;
public class England {

public St r ing name = ”London” ;
public class I r e l a n d {

public St r ing name = ”Dublin” ;
public void print names ( ) {

System . out . p r i n t l n (name ) ;
}

}
}

}

50



Listing 3.4: Type test program
public class C i r c l e implements Drawable {

public int rad iu s ;
public C i r c l e ( int r ) { rad iu s = r ;}
public boolean i sFat ( ) {return fa l se ;}
public void draw ( ) {

// Code to draw . . .
}

}

public class Rectangle implements Drawable {
public short height , width ;
public Rectangle ( short h , short w) {

he ight = h ; width = w; }
public boolean i sFat ( ) {return ( width > he ight ) ; }
public void draw ( ) {

// Code to draw . . .
}

}
public interface Drawable {

public void draw ( ) ;
}

public class Main {

public stat ic void f ( short i ) {
C i r c l e c ; Rectangle r ; Drawable d ;
boolean i s f a t ;

i f ( i > 10) { // 6
r = new Rectangle ( i , i ) ; // 7
i s f a t = r . i sFat ( ) ; // 8
d = r ; // 9

}
else {

c = new C i r c l e ( i ) ; // 12
i s f a t = c . i sFat ( ) ; // 13
d = c ; // 14

}
i f ( ! i s f a t ) d . draw ( ) ; // 16

} // 17

public stat ic void main ( St r ing args [ ] )
{ f ( ( short ) 1 1 ) ; }

}

51



Listing 3.5: Optimised test program
. method public stat ic f (S )V

. l i m i t s tack 3

. l i m i t l o c a l s 2
i l o a d 0
bipush 10
i f i c m p l e l a b e l 0
new Rectangle
a s t o r e 1
a load 1
i l o a d 0
i l o a d 0
i n v o k e s p e c i a l Rectangle/< i n i t >(SS )V
a load 1
i n v o k e v i r t u a l Rectangle / i sFat ( )Z
i s t o r e 0
a load 1
a s t o r e 1
goto l a b e l 1

l a b e l 0 :
new C i r c l e
a s t o r e 1
a load 1
i l o a d 0
i n v o k e s p e c i a l C i r c l e/< i n i t >( I )V
a load 1
i n v o k e v i r t u a l C i r c l e / i sFat ( )Z
i s t o r e 0
a load 1
a s t o r e 1

l a b e l 1 :
i l o a d 0
i f n e l a b e l 2
a load 1
i n v o k e i n t e r f a c e Drawable/draw ( )V 1

l a b e l 2 :
return

. end method

. method public stat ic main ( [ Ljava / lang / St r ing ; )V
. l i m i t s tack 1
. l i m i t l o c a l s 1
bipush 11
i n v o k e s t a t i c Main/ f (S)V
return

. end method

52



Listing 3.6: While-continue test program
// from the paper ” Decompil ing Java Bytecode : Problems , Traps and P i t f a l l s ” , Figure 5
public int f oo ( int i , int j ) {

while ( true ) {
try
{ while ( i < j )

i = j++/i ;
}
catch ( RuntimeException re )
{ i = 10 ;
continue ;
}
break ;

}
return j ;

}

5 Results

No decompiler was able to decompile all test programs with JODE decompiling the most pro-
grams correctly. JODE only managed to decompile 6 programs while four (unmaintained)
decompilers could not decompile any of the test programs correctly. The top three decompilers
were JODE, jad and Java Decompiler whereas the worst decompilers were the unmaintained
commercial decompilers - SourceTec, ClassCracker3 and Mocha. Some decompilers failed simple
because they could not parse the latest class files or arbitrary class files.

Dava, unsurprisingly, was better at decompiling the arbitrary bytecode test programs than
the javac test programs. Dava is the third best decompiler based on our effectiveness measures,
but is the best arbitrary bytecode decompiler. Dava performs similarly to jdec with javac
generated bytecode, though jdec decompiles 2 of these programs correctly compared to 1 for
Dava. Overall Dava decompiles correctly twice the number of programs that jdec decompiles.

Java Decompiler scored the highest using our effectiveness measures, beating Jad and JODE
by performing slightly better at decompiling the arbitrary bytecode programs. JODE was able
to decompile one more program correctly than Java Decompiler though. JODE was the best
decompiler in the original survey and is still one of the best in our evalution but Java Decompiler
beats JODE with our effectiveness measures and only decompiles one less program correctyly
than JODE.

Mocha

Mocha [88], released as a beta version in 1996, was one of the first decompilers available for
Java along with a companion obfuscator named Crema. Unfortunately the author, Hanpeter
van Vliet, died of cancer and the program remained in beta. Mocha can only decompile earlier
versions of Java as it is an old program. It is not useful nowadays except for simple programs
and has been excluded from testing. Mocha is obsolete but is still available on several websites
as the original license permitted its free distribution.

SourceTec (Jasmine)

SourceTec, also known as Jasmine, is another unmaintained old compiler which is a patch to
Mocha. The installation process involves providing Mocha’s class files which are then patched

53



Listing 3.7: Exception test program [17]
. class Except ions
. super java / lang / Object

. method < i n i t >()V
. l i m i t s tack 1
. l i m i t l o c a l s 1
a load 0
i n v o k e s p e c i a l java / lang / Object/< i n i t >()V
return

. end method

. method public stat ic main ( [ Ljava / lang / St r ing ; )V
. l i m i t s tack 1
. l i m i t l o c a l s 1
new Except ions
i n v o k e s p e c i a l Except ions/< i n i t >()V
return

. end method

. method public Except ions ( )V
. l i m i t l o c a l s 1
. l i m i t s tack 2
. catch java / lang / Exception from c to f us ing e
. catch java / lang /RuntimeException from b to d us ing g

a :
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”a”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V

b :
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”b”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V

c :
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”c”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V

d :
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”d”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V

f :
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ” f ”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V
return

e :
a s t o r e 0
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”e”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V
goto f

g :
a s t o r e 0
g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
ldc ”g”
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( Ljava / lang / St r ing ; )V
goto f

. end method

54



Listing 3.8: Try-finally test program
public class TryFina l ly {

public stat ic void main ( St r ing [ ] a rgs ) {
try {

System . out . p r i n t l n ( ” t ry ” ) ;
} f ina l ly {

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
}

}

}

Listing 3.9: Args test program
. class Args
. super java / lang / Object

. method < i n i t >()V
. l i m i t s tack 1
. l i m i t l o c a l s 1
a load 0
i n v o k e s p e c i a l java / lang / Object/< i n i t >()V
return

. end method

. method public stat ic main ( [ Ljava / lang / St r ing ; )V
. l i m i t s tack 2
. l i m i t l o c a l s 1

i c o n s t 0
i s t o r e 0

g e t s t a t i c java / lang /System/ out Ljava / i o / PrintStream ;
i l o a d 0
i n v o k e v i r t u a l java / i o / PrintStream / p r i n t l n ( I )V

return

. end method

55



Figure 3.3: Decompiler Test Results: Each decompiler was tested in different problem areas,
with 5 test programs representing javac generated bytecode and 5 representing arbitrary byte-
code. The results are given using our effectiveness measurement scale with 0 being a perfect
decompilation and 9 being the case in which a decompiler fails. No decompiler was able to
correctly decompile all our test programs with JODE correctly decompiling the most correctly.

by SourceTec (Jasmine). Emmerik included this decompiler in his tests and concluded that it is
only useful for very simple Java 1.1 programs as it failed all the tests. SourceTec (Jasmine) fails
to parse Java 1.6 files therefore fails many of our tests for this reason. This confirms the original
test results which indicate that the decompiler is obsolete and not useful for most decompilation
tasks.

56



Figure 3.4: Decompiler Effectiveness

SourceAgain

Emmerik used the professional version of the decompiler for his tests and found it could de-
compile the Fibonacci program as well as the Usa inner classes program but failed the other
tests.

The SourceAgain web version correctly decompiles the Args test program but incorrectly
decompiles the TryFinally program (Listing 3.10, page 59).

ClassCracker3

Tests were performed on the evaluation version of the program which is available at the Mayon
Software Research’s website2. We attempted to decompile the Args and TryFinally programs
with the result that the class files did not fully decompile. We were unable to assertain whether
this was due to the software being a trial version. The ClassCracker 3 website suggests that the
first five methods of a class should decompile though only the method signature appears in the
decompiler output.

2http://mayon.actewagl.net.au/

57



Figure 3.5: Correct Decompilations

JAD

It passes the first few tests but has trouble with exceptions, control flow, optimised code and
performs no type inference.

Jad incorrectly decompiles the TryFinally test program as it places System.out.println(“test”);
outside of the try section (Listing 3.11, page 59).

The Args test program also decompiles incorrectly, using Jad, with an attempted assignment
of the integer 0 to the args variable which is of type String[] (Listing 3.12, page 59).

58



Listing 3.10: SourceAgain TryFinally decompiled output
public class TryFina l ly {

public stat ic void main ( St r ing [ ] as )
{

try
{

System . out . p r i n t l n ( ” t ry ” ) ;
}
f ina l ly
{

try
{
}
f ina l ly
{

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
throw obj ;

}
}
System . out . p r i n t l n ( ” f i n a l l y ” ) ;

}
}

Listing 3.11: Jad TryFinally decompiled output
public class TryFina l ly {

public stat ic void main ( St r ing args [ ] ) {
System . out . p r i n t l n ( ” try ” ) ;
try {

return ;
} f ina l ly {

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
}

}
}

Listing 3.12: Jad Args decompiled output
class Args {

public stat ic void main ( St r ing args [ ] ) {
args = 0 ;
System . out . p r i n t l n ( args ) ;

}
}

59



JODE

Re-running the tests on version 1.1.2-pre1 produced that same results as Emmerik’s tests.
Emmerik found that JODE completed most tests with few errors including the type inference
in the Sable test program. JODE had programs with intersecting exception handlers and
optimised code.

JODE incorrectly decompiles the TryFinally test program as a try-catch block (Listing 3.13,
page 60). JODE correctly decompiles the Args test program.

Listing 3.13: JODE TryFinally decompiled output
public class TryFina l ly {

public stat ic void main ( St r ing [ ] s t r i n g s ) {
try {

System . out . p r i n t l n ( ” t ry ” ) ;
}catch ( Object ob j e c t ) {

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
throw ob j e c t ;

}
System . out . p r i n t l n ( ” f i n a l l y ” ) ;

}
}

jReversePro

Emmerik test version 1.4.1 and found that it failed all his tests including the trivial Fibo
program which most other decompilers correctly decompiled. Surprisingly jReversePro performs
type inference and correctly typed the variable d in the Sable test program (Listing 3.4, page
51), unlike many other decompilers which typed d as Object and insert typecasts as necessary.
jReversePro does not support Java 1.6 class files and fails to parse the test programs generated
by javac. A small change in the source-code allowed Java 1.6 class files to be accepted though
it does not parse some of the test programs correctly. It does parse the class files generated by
Jasmin as the default class file version is 45.3 but fails to decompile the programs correctly.

60



Dava

Emmerik used version 2.1.0 in his tests and found the output generated by Dava, though mostly
correct, hard to read program which is a problem which should have been solved by the back-end
which restructures code to be more ’programmer-friendly’ [76, 74].

Dava failed the inner class test program and casting test programs with both resulting in
semantically incorrect code. In Emmerik’s test Dava failed to parse the Exceptions program
though this is due to a incorrectly implemented program. The Exceptions program was based
on a control flow graph and description of a test in a paper [71] in which Dava was the only
decompiler to correctly decompile the Exceptions program.

The Dava decompiler could not decompile the TryFinally program (Listing 3.8, page 55).
The resulting program (Listing 3.14, page 61) does not compile due to the variable $r4 being
declared twice. Dava did not decompile the program as a try-finally block and has instead
placed and while loop inside the catch section. The problem occurs as Dava expects the try-
finally block to be implemented with a Java subroutine, whereas javac 1.4.2+ implements finally
clauses by producing the finally block code inline. As Dava aims at decompiling arbitrary class
files it does not look for specific patterns such as try-finally blocks, and therefore does not detect
that this program contains a try-finally block.

The latest version of Dava still fails the Usa inner classes test program (Listing 3.3, page
50) and the casting program (Listing 3.2, page 50). It correctly decompiles the new exceptions
program (Listing 3.7, page 54).

Dava correctly decompiles the Args test program though it types the local variable as byte
instead of int.

Listing 3.14: Dava TryFinally decompiled output
public class TryFina l ly {

public stat ic void main ( St r ing [ ] r0 ) throws java . lang . Throwable {

Throwable r2 ;
try {

System . out . p r i n t l n ( ” t ry ” ) ;
}catch ( Throwable $r4 ) {

l a b e l 0 :
while ( true ) {

try{
r2 = $r4 ;

}catch ( Throwable $r4 ) {
continue l a b e l 0 ;

}

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
throw r2 ;

}
}

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
}

}

61



jdec

jdec is another javac orientated decompiler but does not perform as well as the other newer
decompilers. Java Decompiler, jad and JODE can correctly decompile inner classes while jdec
cannot. jdec also cannot decompile arbitrary bytecode correctly.

The following results were obtained after running tests on the jdec decompiler:

Fibo The program (Listing 3.15, page 63) is semantically correct and produces the desired
output though it is not as tidy as the original source.

Casting The result (Listing 3.16, page 64) looks very different to the original source and the
int cast has not been included. The decompiled code uses a while loop instead of a
for-loop and a StringBuffer instead of a String. This is due to javac converting string
concatenation to use a StringBuffer as it is more efficient.

The result is semantically incorrect as the cast is omitted.

Usa The decompiler could not decompile the inner classes at all with only the outer class in
the output Java source (Listing 3.17, page 64).

Sable The decompiler could not decompile the Sable program correctly. The result (Listing
3.18, page 65) shows incorrectly type variables and but also variables used in the wrong
places - for example aCircle2 is used but not declared that should be the variable d from
the original program. The resulting program does not even compile due to the variable
aCircle2 not being declared. jdec also types the boolean in the program as an int.

Optimised The optimisations caused jdec some trouble in decompilation. The resulting pro-
gram (Listing 3.19, page 66) contains assignment operations within the constructors. For
example the assignment highlighted in the code below should appear on the line after but
it has been placed within the constructor.

Circle JdecGenerated28 = new Circle(aCircle1 = JdecGenerated28; short2);

This is not surprising as jdec is aimed at decompiling javac generated code.

ControlFlow The results for the ControlFlow program (Listing 3.20, page 67) do not compile
as the decompiler has placed the catch declaration intersecting the if-else block.

Exceptions jdec could not decompile the Exceptions program with the resulting program
(Listing 3.21, 67) missing out certain try blocks. The blocks d, e and f are missing and
the program won’t compile because on try block does not have an associated catch block.

TryFinally jdec correctly decompiles the TryFinally program.

Args jdec incorrectly decompiles the Args test program. The resulting program (Listing 3.22,
page 68) not only tries to assign 0 to variable of type String[] but also re-declares the
method argument variable.

jdec only passed one test and failed the other tests producing code which is semantically
and/or syntactically incorrect. jdec is aimed at decompiling code produced by javac so it is not
suprising that it could not decompile the optimised program or the exceptions program as these
used patterns which javac would not have produced. However it is disspointing that the other
programs could not be decompiled either, which were generated using javac. jdec development

62



seems to be in its early stages, even though it is version 2.0, but there has been no release since
May 2008. jdec could decompile the javac 1.6 generated TryFinally program something which
other decompilers, such as Dava, could not.

Listing 3.15: jdec Fibo decompiled output
class Fibo {

// CLASS: Fibo :
Fibo ( ) {

super ( ) ;
return ;

}

// CLASS: Fibo :
private stat ic int f i b ( int i n t 3 ) {

i f ( i n t3 > 1) {
return ( f i b ( ( int3− 1) ) + f i b ( ( int3− 2 ) ) ) ;

}
return i n t 3 ;

}

// CLASS: Fibo :
public stat ic void main ( java . lang . S t r ing [ ] aSt r ing1 ) throws Exception {

int i n t 4= 0 ;
int i n t 5= 0 ;
i n t4 =0;
try {

i n t 4=I n t e g e r . pa r s e In t ( aSt r ing1 [ 0 ] ) ;
}catch ( Exception aException1 ) {

System . out . p r i n t l n ( ” Input e r r o r ” ) ;
System . e x i t ( 1 ) ;

}
i n t 5=f i b ( in t4 ) ;
S t r i n g B u f f e r JdecGenerated35 = new S t r i n g B u f f e r ( ) ;
System . out . p r i n t l n ( JdecGenerated35 . append ( ” f i b o n a c c i ( ” ) . append ( in t4 ) . append ( ” ) = ” ) . append ( in t5 ) . t oS t r i ng ( ) ) ;
return ;

}
}

63



Listing 3.16: jdec Casting decompiled output
public class Casting {

// CLASS: Cast ing :
public Casting ( ) {

super ( ) ;
return ;

}

// CLASS: Cast ing :
public stat ic void main ( St r ing [ ] aSt r ing1 ) {

char char1= 0 ;
char1 =0;
while ( true ) {

i f ( char1 >= 128) {
break ;

}
i f ( char1 < 128) {

St r i ngBu i l d e r JdecGenerated14 = new St r i ngBu i l d e r ( ) ;
System . out . p r i n t l n (

JdecGenerated14 . append ( ” a s c i i ” ) . append ( char1 )
. append ( ” charac t e r ” ) . append ( char1 ) . t oS t r i ng ( ) ) ;

char1=(char ) ( ( char1 + 1 ) ) ;
continue ;

}
}
return ;

}
}

Listing 3.17: jdec Usa inner classes program decompiled output
public class Usa {

/∗∗∗
∗∗Class F i e l d s
∗∗∗/
public St r ing name ;

// CLASS: Usa :
public Usa ( ) {

super ( ) ;
this . name =” Det ro i t ” ;
return ;

}
}

64



Listing 3.18: jdec Sable program decompiled output
public class Sable {
// CLASS: Sab l e :
public Sable ( ) {

super ( ) ;
return ;

}

// CLASS: Sab l e :
public stat ic void f ( short short2 ) {

C i r c l e aC i r c l e 1= null ;
Rectangle aRectangle1= null ;
Rectangle aRectangle2= null ;

int i n t 1= 0 ;
i f ( shor t2 > 10) {

Rectangle JdecGenerated8 = new Rectangle ( short2 , short2 ) ;
aRectangle1=JdecGenerated8 ;
i n t1=aRectangle1 . i sFat ( ) ;
aRectangle2=aRectangle1 ;

} else {
C i r c l e JdecGenerated29 = new C i r c l e ( short2 ) ;
aC i r c l e 1=JdecGenerated29 ;
i n t1=aC i r c l e 1 . i sFat ( ) ;
aC i r c l e 2 =aC i r c l e 1 ;

}
i f ( i n t1==0) {

aC i r c l e 2 . draw ( ) ;
return ;

}
}

// CLASS: Sab l e :
public stat ic void main ( St r ing [ ] aSt r ing1 ) {

f ( ( short ) 1 1 ) ;
return ;

}
}

Java Decompiler - Yet Another Fast Java Decompiler

Java Decompiler is a newer decompiler which outperforms Jad and Dava overall. The reason
which Java Decompiler out performs Dava is that it is correctly able to decompile the TryFinally
program which is not something that Dava is aimed at doing. Java Decompiler also has trouble
decompiling arbitrary bytecode which is where Dava does better.
The following results were obtained after running tests on Java Decompiler:

Fibo The Fibonacci program correctly decompiled with tidy presented source code (Listing
3.23, page 69).

Casting The decompiled Casting program (Listing 3.24, page 69) is contains a syntax error
and does not include the int cast. This compiler does correctly type the for-loop variable
as a char but incorrectly attempts to inititalise the variable with a single quote.

65



Listing 3.19: jdec Optimised Sable program decompiled output
public class Optimised {

// CLASS: Optimised :
public stat ic void f ( short short2 ) {

Rectangle aRectangle1= null ;

short short2= 0 ;
i f ( shor t2 > 10) {

Rectangle JdecGenerated8 =
new Rectangle ( aRectangle1 = JdecGenerated8 ; short2 , short2 ) ;

shor t2=aRectangle1 . i sFat ( ) ;
aRectangle1 =aRectangle1 ;

} else {
C i r c l e JdecGenerated28 =

new C i r c l e ( aC i r c l e 1 = JdecGenerated28 ; short2 ) ;
shor t2=aC i r c l e 1 . i sFat ( ) ;
aC i r c l e 1 =aC i r c l e 1 ;

}

i f ( shor t2==0) {
aC i r c l e 1 . draw ( ) ;
return ;

}
}

// CLASS: Optimised :
public stat ic void main ( St r ing [ ] aSt r ing1 ) {

f ( ( short ) 1 1 ) ;
return ;

}
}

Usa The decopmiled Usa program (Listing 3.25, page 70) is correct, with the inner classes
reproduced correctly.

Sable jdec decompiled the Sable test program correctly (Listing 3.26, page 70) but did not
correctly type d as Drawable. No type inference was performed and a type cast was
inserted at the draw() method call.

Optimised jdec incorrectly decompiled (Listing 3.27, page 71) the optimised Sable test pro-
gram.

Firstly the boolean variable has not been declared and the method argument is used in
the if statement instead of a separate boolean variable. The Rectangle and Circle object
initiliasation is spread over two lines and the result includes a called to the method ¡init¿().
The only local variable is assigned to itself in the last line in each of the if and else sections.
There is only one local variable and declared where there were four in the original source
- this is due to the re-use of local variable slots in the bytecode.

ControlFlow TODO: this maybe correct? (Listing 3.28, page 71).

Exceptions The decompiled Exceptions program (Listing 3.29, page 72) is incorrect. The

66



Listing 3.20: jdec ControlFlow program decompiled output
public class ControlFlow {

// CLASS: ControlFlow :
public ControlFlow ( ) {

super ( ) ;
return ;

}

// CLASS: ControlFlow :
public int f oo ( int int4 , int i n t 5 ) {

int i n t 4= 0 ;
while ( true ) {

try {
i f ( i n t4 < i n t 5 ) {

i n t 4 = ( in t5++) / ( in t4 ) ;
continue ;

} else {

}catch ( RuntimeException aRuntimeException1 ) {

}
i n t 4 =10;
continue ;

}

}
return i n t 5 ;

}
}

Listing 3.21: jdec Exceptions program decompiled output
public void Except ions2 ( ) {

System . out . p r i n t l n ( ”a” ) ;
try {

System . out . p r i n t l n ( ”b” ) ;
try {

System . out . p r i n t l n ( ”c” ) ;
return ;

}catch ( RuntimeException this ) {
System . out . p r i n t l n ( ”g” ) ;

}
}

}

67



Listing 3.22: jdec Args program decompiled output
class Args {

// CLASS: Args :
Args ( ) {

super ( ) ;
return ;

}

// CLASS: Args :
public stat ic void main ( java . lang . S t r ing [ ] aSt r ing1 ) {

java . lang . S t r ing [ ] aSt r ing1 = 0 ;
aStr ing1 =0;
System . out . p r i n t l n ( aStr ing1 ) ;
return ;

}

}

resulting program does not represent the correct control flow of the original control flow
graph. The program also uses a variable named this which is a reserved word in Java.

TryFinally The TryFinally program decompiles correctly (Listing 3.30, page 72).

Args The Args program decompiles incorrectly (Listing 3.31, page 72) as it tries to assign the
value 0 to method argument which is of type String[].

Java Decompiler is able to decompile only simple programs such as the Fibo program but
could not decompile the other programs well. Many contained semantic and syntactic errors.
Java Decompiler, like jdec, could decompile the javac 1.6 generated TryFinally program some-
thing which other decompilers, such as Dava, could not. Java Decompiler seems similar to jdec
in the quality of decompilation though their version numbers seem to suggest that jdec is more
mature - with jdec at version 2.0 and Java Decompiler at version 0.2.7.

Java Decompiler, like jdec, seems aimed at decompiling javac generated bytecode rather
than arbtrary bytecode like Dava. Java Decompiler passed the inner classes test unlike some of
the other decompilers like jdec, and Dava.

Being at an early stage in development it is hard to tell how good the decompiler could be
in the future but it is already comparable jdec and some of the decompilers in Emmerik’s tests.
Unfortunately Java Decompiler is not open-source so we must rely on the current developer to
improve the software.

68



Listing 3.23: jd Fibo program decompiled output
class Fibojd {

private stat ic int f i b ( int paramInt ) {
i f ( paramInt > 1)

return ( f i b ( paramInt − 1) + f i b ( paramInt − 2 ) ) ;
return paramInt ;

}

public stat ic void main ( St r ing [ ] paramArrayOfString ) throws Exception {
int i = 0 ;
try {

i = I n t e g e r . pa r s e In t ( paramArrayOfString [ 0 ] ) ;
}catch ( Exception l o ca lExcep t i on ) {

System . out . p r i n t l n ( ” Input e r r o r ” ) ;
System . e x i t ( 1 ) ;

}
int j = f i b ( i ) ;
System . out . p r i n t l n ( ” f i b o n a c c i ( ” + i + ” ) = ” + j ) ;

}
}

Listing 3.24: jd Casting program decompiled output
public class Casting {

public stat ic void main ( St r ing [ ] paramArrayOfString ) {
for (char c = ’ ; c < 128 ; c = ( char ) ( c + ’ \1 ’ ) )

System . out . p r i n t l n (” a s c i i ” + c + ” charac t e r ” + c ) ;
}

}

6 Conclusion

Many of the companies producing commercial decompilers have disappeared and their decom-
pilers have been left unmaintained. Even some free and/or open-source decompilers such as
Jad and JODE have been unmaintained for some time. Jad is not open-source so the project
cannot be taken up by others and the last major update was in 2001.

Decompilation has many uses in the real world, such as the recovery of lost source code for
a crucial application [43], therefore if the quality of Java decompilers increased they might be
of more use commercially.

One of the most active decompiler projects is the open-source Dava [69, 76, 74, 70, 71]
decompiler, part of the Soot Optimisation Framework [87], which is a research project carried
out by the Sable Research Group at McGill University. Dava differs from other decompilers in
that it aims to decompile arbitrary bytecode whereas other decompilers rely on known patterns
produced by Java compilers (and this is usually javac). Dava is better at decompiling arbitrary
bytecode whereas other decompilers are better at decompiling javac generated bytecode.

A decompiler aimed at decompiling arbitrary bytecode, like Dava, can be more useful in some
instances than a decompiler aimed at bytecode generated by a specific compiler. Java bytecode
can be generated by tools other than a Java decompiler and many decompilers are aimed at
patterns produced by Java decompilers and some specifically javac. Knowing the patterns that
a compiler will produce makes decompilation of bytecode easier and it can sometimes be just a

69



Listing 3.25: jd Usa program decompiled output
public class Usa {

public St r ing name ;

public Usa ( ) { this . name = ” Det ro i t ” ; }

public class England {
public St r ing name ;

public England ( ) { this . name = ”London” ; }

public class I r e l a n d {
public St r ing name ;

public I r e l a n d ( ) { this . name = ”Dublin” ; }

public void print names ( ) {
System . out . p r i n t l n ( this . name ) ;

}
}

}
}

Listing 3.26: jd Sable program decompiled output
public class Sable {

public stat ic void f ( short paramShort ) {
Object l o c a l O b j e c t ;
boolean bool ;
i f ( paramShort > 10) {

Rectangle l o c a l R e c t a n g l e = new Rectangle ( paramShort , paramShort ) ;
bool = l o c a l R e c t a n g l e . i sFat ( ) ;
l o c a l O b j e c t = l o c a l R e c t a n g l e ;

} else {
C i r c l e l o c a l C i r c l e = new C i r c l e ( paramShort ) ;
bool = l o c a l C i r c l e . i sFat ( ) ;
l o c a l O b j e c t = l o c a l C i r c l e ;

}
i f ( ! ( bool ) ) ( ( Drawable ) l o c a l O b j e c t ) . draw ( ) ;

}

public stat ic void main ( St r ing [ ] paramArrayOfString ) {
f ( 1 1 ) ;

}
}

70



Listing 3.27: jd Optimised Sable program decompiled output
public class Optimised {

public stat ic void f ( short paramShort ) {
Object l o c a l O b j e c t ;
i f ( paramShort > 10) {

l o c a l O b j e c t = new Rectangle ;
( ( Rectangle ) l o c a l O b j e c t ).< i n i t >(paramShort , paramShort ) ;
paramShort = ( ( Rectangle ) l o c a l O b j e c t ) . i sFat ( ) ;
l o c a l O b j e c t = l o c a l O b j e c t ;

} else {
l o c a l O b j e c t = new C i r c l e ;
( ( C i r c l e ) l o c a l O b j e c t ).< i n i t >(paramShort ) ;
paramShort = ( ( C i r c l e ) l o c a l O b j e c t ) . i sFat ( ) ;
l o c a l O b j e c t = l o c a l O b j e c t ;

}
i f ( paramShort == 0)

( ( Drawable ) l o c a l O b j e c t ) . draw ( ) ;
}

public stat ic void main ( St r ing [ ] paramArrayOfString ) {
f ( 1 1 ) ;

}
}

Listing 3.28: jd ControlFlow program decompiled output
public class ControlFlow {

public stat ic int f oo ( int paramInt1 , int paramInt2 ) {
try {

while ( paramInt1 < paramInt2 )
paramInt1 = paramInt2++ / paramInt1 ;

}catch ( RuntimeException localRuntimeExcept ion ) {
while ( true ) {

paramInt1 = 10 ;
}

}
return paramInt2 ;

}
}

71



Listing 3.29: jd Exceptions program decompiled output
public void Except ions2 ( ) {

System . out . p r i n t l n ( ”a” ) ;
try {

System . out . p r i n t l n ( ”b” ) ;
}catch ( java . lang . RuntimeException this ) {

try {
System . out . p r i n t l n ( ”c” ) ;
System . out . p r i n t l n ( ”d” ) ;
System . out . p r i n t l n ( ” f ” ) ;
return ;

}catch ( java . lang . Exception this ) {
while ( true )

System . out . p r i n t l n ( ”e” ) ;
this = this ;
System . out . p r i n t l n ( ”g” ) ;

}
}

}

Listing 3.30: jd TryFinally program decompiled output
public class TryFina l ly {

public stat ic void main ( St r ing [ ] paramArrayOfString ) {
try {

System . out . p r i n t l n ( ” t ry ” ) ;
} f ina l ly {

System . out . p r i n t l n ( ” f i n a l l y ” ) ;
}

}
}

Listing 3.31: jd Args program decompiled output
class Args
{

public stat ic void main ( St r ing [ ] paramArrayOfString )
{

paramArrayOfString = 0 ;
System . out . p r i n t l n ( paramArrayOfString ) ;

}
}

72



matter of reversing those patterns.
Decompiling bytecode arbitrarily, i.e. not by inverting known patterns produced by com-

pilers, can be a disadvantage in some cases, for example Dava could not correctly decompile
the trivial TryFinally test program. Other decompilers could decompile this test program by
finding a known pattern produced by a compiler for try-finally blocks.

Though there is a lack of commercial Java decompilers Java bytecode decompilation and
decompilation in general are fruitful research areas. One of the main areas for research is
type inference both in bytecode (e.g. [25, 70, 57]) and machine code (e.g. [73]). The task of
type inference in Java bytecode is simpler than that of machine code due to the information
contained within a Java class file - a Java class file contains type information for fields and
method parameters and returns.

Type inference is an interesting problem in decompilation and two of the best decompilers
tested (Dava and JODE) were both able to correctly type the variables in the type inference
test. Most other decompilers, which did not perform type inference, typed variables as Object
and inserted a typecast where necessary. The type inference problem is NP-Hard in the worst
case [46], however, if the type inference algorithm is optimised for the common-case rather than
the worst case it is possible to perform type analysis efficiently for most real-world code as
worst-case scenarios are unlikely [25].

All the decompilers tested had some problems decompiling some of the tests. In terms of our
effectiveness measures, Dava, Jad, Java Decompiler and JODE were the four best decompilers.
Of these, JODE is the best decompiler as it correctly decompiles 6 out of the 10 test programs
correctly. Unfortunately Jad is unmaintained and so is not guaranteed to work for future
versions of Java class files. The commercial decompiler SourceAgain falls slightly behind in
the effectiveness measures, but was able to decompile 4 programs correctly - the same number
as Dava and Jad. SourceAgain performed similarly to Jad and Dava but is now obsolete and
only available as a web application which can decompile single class files. Java Decompiler is a
newer decompiler in active development, which performs highest in our effectiveness measures
and correctly decompiles 5 out of 10 programs. This decompiler performs best at javac generated
bytecode and may improve in the future even more as it is in development.

Knowing the tool that generated a class file can be useful in knowing which decompiler to
use. If a class file was generated by javac then a javac specific decompiler would be more useful
than an arbitrary decompiler such as Dava. If the class file was generated by other means, or
modified by an obfuscator or optimiser, a javac specific decompiler would most likely fail so an
arbitrary decompiler would be more useful in this case.

We have demonstrated the effectiveness of several Java decompilers on a small set of test
programs, each of which were designed to test different problem areas in decompilation. Such a
small test set of programs may not be representative of real-world Java programs and, in fact,
some problem areas tested may not be of high relevance in real-world programs.

In terms of our evaluation, Dava and JODE are two of the best decompilers, with Dava
being the best arbitrary bytecode decompiler and JODE being the best javac oriented bytecode
decompiler. Dava faces some challenges in decompilation of Java specific code while JODE has
problems with arbitrary bytecode. Future work will investigate the possibility of combining the
desirable features of these to produce a single decompiler capable of decompilation of both Java
specific features (such as try-finally blocks) and arbitrary bytecode.

There are two popular books on decompiling Java: ‘Covert Java: Techniques for Decompil-
ing, Patching, and Reverse Engineering’ [55] and ‘Decompiling Java’ [77]. The former is very
focused on using tools to perform decompilation, with Jad as an example, and less focused on
the theory and implementation of a decompiler. They demonstrate Jad as an excellent decom-
piler and dismiss decompilation problems suggesting they only occuring due to obfuscation.

73



‘Decompiling Java’ demonstrates the ideas of Java bytecode, decompilation, obfuscation and
shows the begining of an implementation of a simple decompiler.

74



Chapter 4

Protection for Java Bytecode

If applications are to be distributed as Java class files we should be able to protect the intel-
lectual property contained within the bytecode (such as proprietary algorithms) from reverse-
engineering. An adversery (such as a software pirate or competing company) having access to
the relatively easy to decompile Java class files presents a greater risk of them reverse-engineering
the application than if it were distributed as machine code binaries.

There are two different ways in which we could protect intellectual property stored within
class files. Either we hide the information or we prevent the user from decompiling the class
file (or both).

1 Native Code

Java code can call native methods which means that the important sections in a class file could
be written using a language such as C. The benefit is that the native code is difficult to decompile
but the downside is that the code is no longer portable - losing one of attributes that makes
Java popular.

2 Encryption

One technique used by several commercial products to encrypt Java class files, thereby hiding
intellectual property from adversaries. ChainKey’s Java Code Protector [7] uses this technique
and suggests, in their marketing material, that Java class files are impenetrable after using their
product.

However, it is trivial to access the unencrypted Java class files. A Java virtual machine, which
implements the Java Virtual Machine Specification, only accepts class files adhering to the
specification. A Java virtual machine therefore does not understand encrypted class files and so
class files must be decrypted before they are sent to the virtual machine. It is a trivial task to
re-write method java.lang.ClassLoader.defineClass() in the Java runtime that is the entry point
for all class files. Class files pass to this method must adhere to the Java Virtual Machine Spec-
ification and therefore must be un-encrypted. Code can be added to the class loader method to
output all class files that it recieves.

Encryption is therefore a fundamentally flawed approach to protecting intellectual property
and as such it is advised not to use such techniques to protect Java class files from adversaries
[35].

75



3 Watermarking

The watermarking process is designed to limit distribution of illegal software by allowing the
software owner to embed a hidden watermark into their program. Watermarking will be dis-
cussed in detail in chapter 5.

4 Code Obfuscation

To obfuscate a program is to perform a semantics preserving transformation with three con-
ditions: functionality must be maintained, the obfuscated code must be efficient and the code
must be sufficiently difficult to understand if reverse-engineered [27]. Code obfuscation will be
discussed in detail in chapter 6.

76



Chapter 5

Watermarking

1 Introduction

The watermarking process is designed to limit distribution of illegal software by allowing the
software owner to embed a hidden watermark into their program. This hidden watermark can
be used, at a later date, to prove that they are the owner of software that has been stolen. It
is also possible to embed a unique customer identifier in each copy of the software distributed
which allows the software company to identify the individual that pirated the software. It
is necessary that the watermark is hidden so that it cannot be detected and removed. It is
also neccesary that the watermark is resillent to semantics preserving transformations (such as
optimizations or obfuscations).

77



2 Survey of Techniques

2.1 Add Expression

The Add Expression algorithm embeds a integer watermark into a random method in a Java
class file. The algorithm splits the integer watermark into two (a and b) and, in a randomly
chosen method, creates a new local variable which the sum of a and b is assigned to.

The algorithm relies on the use of a named variable within the class file to locate the
watermark (local variable name will begin with sm$). Local variable names can be stored in
a method’s local variable table for debugging purposes but they are not neccessary, as local
variables do not require names in Java bytecode. Therefore by removing local variable tables
the recognition algorithm no longer works.

Assuming we no longer rely on a name stored within the class file itself, but use an external
key file instead, the local variable used to store the watermark is not used for anything else.
Therefore simple static analysis removes the watermark from the class file (something that a
bytecode optimiser will do as part of dead code elimination).

2.2 Monden

Monden et al. [72] suggest a technique whereby a dummy method within a class file is trans-
formed to encode the watermark.

3 Embedding a Unique ID

4 Fingerprinting

78



Chapter 6

Code Obfuscation

The relative ease of decompilation of Java class files increases the risk of exposing intellectual
property such as proprietary algorithms. A company must protect is intellectual property but by
distributing software as Java class files the risk of exposing implementation details is far greater
than if the software is distributed as machine code executables. Java brings many advantages,
such as portability and verifiable class files, but also brings with it the possibility of exposing
the original source code of the application via decompilation.

To obfuscate a program is to perform a semantics preserving transformation with three con-
ditions: functionality must be maintained, the obfuscated code must be efficient and the code
must be sufficiently difficult to understand if reverse-engineered [27]. Obfuscating transforma-
tions can be applied to Java source or Java bytecode.

Techniques to secure the contain of Java class files via obfuscation have been researched
since Java was first developed. One of the first Java decompilers, Mocha, had a companion
obfuscator named Crema. There are now several commercial (e.g. Zelix Class Master) and
open-source obfuscators for Java byte code.

There are two ways in which obfuscating Java bytecode can reduce the possibility of intel-
lectual property falling into the hands of an attacker. Firstly obfuscating Java bytecode in such
ways that it produces unexpected bytecode sequences will increase the dificulty of decompila-
tion. Dava is aimed at decompiling such arbitrary code whereas most other decompilers fail.
Secondly, if a program can be decompiled correctly, is to increase the difficulty of understand
the decompiled code. The harder a program is to understand the longer it will take to produce
a competing product based on the proprietary algorithms. This will either deter an attacker or
will simply to so long that by the time an attacker has understood the code it is out-of-date.

Much research has gone into obfuscating programs to decrease understanding and there are
many free and commercial obfuscators which implement such techniques. A side effect of some
semantics preserving transformations applied to bytecode is that some decompilers, which are
aimed at decompiling javac generated bytecode, fail when encountering unexpected bytecode
sequences.

1 Techniques

1.1 Identifier Renaming

Well written source code is self-documenting [78] as the meaning of methods, variables and
classes can be given a name which describes their purpose. Replacing meaningful identifier
names with random, meaningless ones results in a less readable program. Identifier renaming
is one of the most common obfuscations and is simple to implement. Identifier renaming can

79



be applied to Java source code or Java bytecode, the latter being easy to implement as it can
be as simple as renaming entries in the constant pool.

Identifier renaming is a one-way transformation as the original names of the identifiers cannot
be recovered but some techniques have been suggested to intelligently generate meaningful
names based on types and uses of the identifiers [32].

Chan et al suggest using illegal identifiers, such as Java keywords, by modifying Java class
files. The motivation behind the use of illegal identifiers is to make the class files un-decompilable
and they show that several decompilers fail or produce illegal Java source. Contratry to Chan
et al ’s suggestions it is trivial to deobfuscate these kind of obfuscations as it merely involves
renaming the illegal identifiers using legal names (allowing decompilation to legal Java source).

2 How Not To Obfuscate

Obfuscating techniques can be useful in increasing the difficulty of understanding a decompiled
program but we must be careful to obfuscate every part of the program. This section is based
on a trial version of an application distributed as a jar file which requires a code to activate the
full version.

Suppose we have an application which displays a dialog box where the user enters a username
and a code which they recieve from the vendor by an algorithm based on the username. The
username is checked to see if it matches the code in the application in a highly obfuscated class
which is hard to decompile and even harder to understand. Other classes of the application are
also obfuscated so it is not easy to tell which class deals with registration checking.

How can we crack this program?

Step 1 We use grep to search for instances of the word ‘Registered’. Surprisingly we find that
several class files including Main.class match the search.

Step 2 We decompile Main.class, using Jad, though it doesn’t matter if the class decompiles
correctly as we only want to find the where the word ‘Registered’ is used.

Step 3 We find in Main.jad uses of a variable named $isRegistered. We look for an assignment
to isRegistered which calls a method abc in an obfuscated class XYZ. XYZ is the regis-
tration checking class. Method abc accepts to Strings - username and code - and returns
a boolean.

Step 4 We replace the method call with the value true but this doesn’t work as the registration
checking code is probably used in other places in the code. We decide it will be easier if
method abc always returned true.

Step 5 Unfortunately returning true will not always work as the method call is of the form

isRegistered = XYZ.abc(username, ”9” + code) ? false : XYZ.abc(username,
code);

We therefore, assuming all calls to XYZ.abc in other classes are the same, need to replace
the method code of XYZ.abc with bytecode instructions which return false if code begins
with 9 and true otherwise.

Step 6 We use a bytecode editor to edit XYZ.class and replace the code attribute with new
bytecode as shown in listing 6.1, page 81.

Step 7 Re-create the jar file and execute the program to use the full version of the software.

80



Leaving a variable named $isRegistered is like holding up a big sign saying ‘crack me here’.
It doesn’t matter how obfuscated XYZ.class is if there is a plaintext variable name which shows
us exactly which method we’re interested in and how it should work. In order to fully protect a
program all variables must be obfuscated not just variables in the seemingly important classes.

It may also be a good idea to encode string constants and replace all string constants in a
program with an encoded string and method call to a decoder - this is something that Zelix
Class Master does (see TODO).

Listing 6.1: bytecode representing which returns 0 if string begins with a, otherwise returns 1
a load 0
i nvokev i r t ua l java / lang / St r ing / length ( ) I
i f l e a
a load 0
i c on s t 0
i nvok ev i r t ua l java / lang / St r ing /charAt ( I )C
bipush 57
i f i cmpne a
i c on s t 0
goto b

a :
i c o n s t 1

b :
i r e t u rn

81



Appendix A

Java Class File Format

Class file primitives types: TODO
A Java compiler compiles Java source code into intermediate Java Byte Code in files ending

with the extension .class. Listing A.2, page 85 shows a hex dump of the Java class file for the
hello world program (Listing A.1, page 84).

Java class files are divided into 10 areas:

Magic Number 0xCAFEBABE

Version Numbers The minor and major versions of the class file

Constant Pool Pool of constants for the class

Access Flags e.g. abstract, static, etc

This Class The name of the current class

Super Class The name of the super class

Interfaces Any interfaces in the class

Fields Any fields in the class

Methods Any methods in the class

Attributes Any attributes of the class

Magic Number

The first four bytes of a class file is the magic number 0xCAFEBABE (3405691582 in decimal)
which identifies the file as a Java class file to the Java Virtual Machine. The choice of magic
number was taken by James Gosling who used a similar hex number 0xCAFEDEAD to describe
a local cafe they frequented and which was used as the magic number for a an object file format.
When a new magic number was needed for the Java class file a search for words other than
DEAD resulted in the use of BABE [19].

Version Numbers

The next four bytes are the major and minor version numbers of the compiler used. The minor
version of listing A.2, page 85 is 0x0000 and the major version is 0x0031 (decimal 49). Versions
of Java Virtual Machines are J2SE 6.0=50, J2SE 5.0=49, JDK 1.4=48, JDK 1.3=47, JDK
1.2=46, JDK 1.1=45.

82



Figure A.1: Conceptual diagram of a Java class file. Source: [20]

Constant Pool

The next two bytes of a class file are the constant pool count. The constant pool is an array
of variable length elements containing every constant and variable name used in the Java class.
Constants are referenced by their constant pool index through the bytecode. Each constant in
the pool is preceded by a tag denoting it’s type (TODO: INSERT TABLE OF TYPES). The
count of the constant pool is one greater than the actual number of entries as the constant
pool count is included itself in the count. A lot of the tags in the constant pool are symbolic
references to other members of the constant pool. Symbolic references are resolved at runtime.

The constant pool count bytes are 0x00, 0x1D (decimal 29) in listing A.2, page 85 meaning
that there are 28 constants and/or variables used in the program.

Access Flags

The first two bytes after the constant pool are access flags which show whether the file is a class
or interface and whether it is final, abstract, and/or public. Access flags are or’d together to
generate a modifier containing all the access flags.

TODO: INSERT TABLE FROM PAGE 35, decompiling Java.

This Class

This class contains an reference to an index in the constant pool containing the name of the
class defined in the file.

83



Listing A.1: Hello World Java Program
public c lass HelloWorld {

public stat ic void main ( St r ing [ ] a rgs ) {
System . out . p r i n t l n ( ” He l lo World” ) ;

}
}

Super Class

This class contains an reference to an index in the constant pool containing the name of the
parent of the class defined in the file.

Interfaces

The next two bytes of a class file are the interfaces count. The interfaces then follow as references
to indexes in the constant pool.

Fields

The next two bytes of a class file are the field count followed by the fields declared in the class
file. Each field is composed of access flags, name type, description and attributes. The access
flags are or’d together to produce a one byte modifier while the type, description and attributes
are references to indexes in the constant pool.

Methods

The next two bytes of a class file are the method count followed by the methods declared in the
class file. Each method is composed of access flags, name type, description and attributes.

Attributes

The next two bytes of a class file are the attribute count followed by attributes of the class file
which include the name of the source file, information about inner classes. Other attributes can
be stored here too.

84



Listing A.2: Hex Dump of Hello World Java Program
CAFEBABE00000031001D0A0006000F09001000110800120A
001300140700150700160100063 C696E69743E0100032829
56010004436 F646501000F4C696E654E756D626572546162
6C650100046D61696E010016285B4C6A6176612F6C616E67
2F537472696E673B295601000A536F7572636546696C6501
000F48656C6C6F576F726C642E6A6176610C000700080700
170C0018001901000B48656C6C6F20576F726C6407001A0C
001B001C01000A48656C6C6F576F726C640100106A617661
2F6C616E672F4F626A6563740100106A6176612F6C616E67
2F53797374656D0100036F75740100154C6A6176612F696F
2F5072696E7453747265616D3B0100136A6176612F696F2F
5072696 E7453747265616D0100077072696E746C6E010015
284 C6A6176612F6C616E672F537472696E673B2956002100
050006000000000002000100070008000100090000001D00
010001000000052 AB70001B100000001000A000000060001
000000010009000 B000C0001000900000025000200010000
0009 B200021203B60004B100000001000A0000000A000200
000003000800040001000 D00000002000E

Listing A.3: Mnemonic Byte Code Dump of Hello World Java Program
Class : HelloWorld
Supe rc l a s s : java / lang /Object
Source F i l e : HelloWorld . java
Access Flags : {public super synchronized }
cf−>major ver s i on : 49
cf−>cons tant poo l count : 29
cf−>methods count : 2
cf−>a t t r i bu t e s c oun t : 1
Constant Pool :

1 : CONSTANT Methodref − c l a s s i n d e x : 6 name and type index : 15
2 : CONSTANT Fieldref − c l a s s i n d e x : 16 name and type index : 17
3 : CONSTANT String : He l lo World
4 : CONSTANT Methodref − c l a s s i n d e x : 19 name and type index : 20
5 : CONSTANT Class : Index 21 , Name HelloWorld
6 : CONSTANT Class : Index 22 , Name java / lang /Object
7 : CONSTANT Utf8 : <i n i t >
8 : CONSTANT Utf8 : ( )V
9 : CONSTANT Utf8 : Code
10 : CONSTANT Utf8 : LineNumberTable
11 : CONSTANT Utf8 : main
12 : CONSTANT Utf8 : ( [ Ljava/ lang / St r ing ; )V
13 : CONSTANT Utf8 : SourceF i l e
14 : CONSTANT Utf8 : HelloWorld . java
15 : CONSTANT NameAndType − name index : 7 d e s c r i p t o r i nd ex : 8
16 : CONSTANT Class : Index 23 , Name java / lang /System
17 : CONSTANT NameAndType − name index : 24 d e s c r i p t o r i nd ex : 25
18 : CONSTANT Utf8 : He l lo World
19 : CONSTANT Class : Index 26 , Name java / i o /PrintStream
20 : CONSTANT NameAndType − name index : 27 d e s c r i p t o r i nd ex : 28
21 : CONSTANT Utf8 : HelloWorld
22 : CONSTANT Utf8 : java / lang /Object
23 : CONSTANT Utf8 : java / lang /System
24 : CONSTANT Utf8 : out
25 : CONSTANT Utf8 : Ljava/ i o /PrintStream ;
26 : CONSTANT Utf8 : java / i o /PrintStream
27 : CONSTANT Utf8 : p r i n t l n
28 : CONSTANT Utf8 : ( Ljava/ lang / St r ing ; )V

public super synchronized class HelloWorld extends java / lang /Object

Method public <i n i t > ( ) −> void

0 a load 0
1 invokenonv i r tua l #1 <Method java / lang /Object .< i n i t > ( )V>
4 return

Method public stat ic main ( java / lang / St r ing [ ] ) −> void

0 g e t s t a t i c #2 <Fie ld java / lang /System . out Ljava/ i o /PrintStream;>
3 ldc #3 <St r ing ” He l lo World”>
5 i nvokev i r t ua l #4 <Method java / i o /PrintStream . p r i n t l n ( Ljava/ lang / St r ing ; )V>
8 return

85



Listing A.4: Simple use of Java if statement
public c lass i f s imp l e {

public stat ic void main ( St r ing [ ] a rgs ) {
i f ( args [ 0 ] == ” t e s t ” ) {

System . out . p r i n t l n ( ” h e l l o ” ) ;
} else{

System . out . p r i n t l n ( ”goodbye” ) ;
}

}

}

Listing A.5: Mnemonic Byte Code Dump of Java Simple If program
public c lass i f s imp l e extends java . lang . Object{
public i f s imp l e ( ) ;

Code :
0 : a load 0
1 : i nvok e sp e c i a l #1; //Method j ava / l ang / Ob j ec t .”< i n i t >”:()V
4 : return

public stat ic void main ( java . lang . S t r ing [ ] ) ;
Code :

0 : a load 0
1 : i c o n s t 0
2 : aaload
3 : ldc #2; // S t r i n g t e s t
5 : i f acmpne 19
8 : g e t s t a t i c #3; // F i e l d j a va / l ang /System . out : Ljava / i o / PrintStream ;
11 : ldc #4; // S t r i n g h e l l o
13 : i nvok ev i r t ua l #5; //Method j ava / i o / PrintStream . p r i n t l n : ( Ljava / l ang / S t r i n g ; )V
16 : goto 27
19 : g e t s t a t i c #3; // F i e l d j a va / l ang /System . out : Ljava / i o / PrintStream ;
22 : ldc #6; // S t r i n g goodbye
24 : i nvok ev i r t ua l #5; //Method j ava / i o / PrintStream . p r i n t l n : ( Ljava / l ang / S t r i n g ; )V
27 : return

}

Listing A.6: Simple use of Java loop statements
public class l o op s imp l e {

public stat ic void main ( St r ing [ ] a rgs ) {
for ( int i = 0 ; i < 100 ; i++) {

System . out . p r i n t l n ( i ) ;
}

int i = 0 ;
while ( i < 100) {

System . out . p r i n t l n ( i ) ;
i ++;

}
}

}

86



Listing A.7: Mnemonic Byte Code Dump of Simple use of Java loop statements
public class l o op s imp l e extends java . lang . Object{
public l o op s imp l e ( ) ;

Code :
0 : a load 0
1 : i n v o k e s p e c i a l #1; //Method java / lang / Object .”< i n i t >”:()V
4 : return

public stat ic void main ( java . lang . S t r ing [ ] ) ;
Code :

0 : i c o n s t 0
1 : i s t o r e 1
2 : i l o a d 1
3 : bipush 100
5 : i f i c m p g e 21
8 : g e t s t a t i c #2; // F i e l d java / lang /System . out : Ljava / io / PrintStream ;
11 : i l o a d 1
12 : i n v o k e v i r t u a l #3; //Method java / io / PrintStream . p r i n t l n : ( I )V
15 : i i n c 1 , 1
18 : goto 2
21 : i c o n s t 0

22 : i s t o r e 1
23 : i l o a d 1
24 : bipush 100
26 : i f i c m p g e 42
29 : g e t s t a t i c #2; // F i e l d java / lang /System . out : Ljava / io / PrintStream ;
32 : i l o a d 1
33 : i n v o k e v i r t u a l #3; //Method java / io / PrintStream . p r i n t l n : ( I )V
36 : i i n c 1 , 1
39 : goto 23
42 : return

}

87



Listing A.8: Mnemonic Byte Code Dump of c2j Java translation of ?? - short C program with
goto statements
public c lass t e s t extends java . lang . Object{
public t e s t ( ) ;

Code :
0 : a load 0
1 : i nvok e sp e c i a l #1; //Method j ava / l ang / Ob j ec t .”< i n i t >”:()V
4 : return

public stat ic void main ( java . lang . S t r ing [ ] ) throws java . lang . Exception ;
Code :

0 : i c o n s t 0
1 : i s t o r e 1
2 : i c o n s t 0
3 : i s t o r e 2
4 : i c o n s t 0
5 : i s t o r e 3
6 : i c o n s t 1
7 : i s t o r e 4
9 : i c o n s t 1
10 : i s t o r e 5
12 : new #2; // c l a s s j a va / u t i l / Scanner
15 : dup
16 : g e t s t a t i c #3; // F i e l d j a va / l ang /System . in : Ljava / i o / InputStream ;
19 : i nvok e sp e c i a l #4; //Method j ava / u t i l / Scanner .”< i n i t >”:( Ljava / i o / InputStream ; )V
22 : a s t o r e 6
24 : a load 6
26 : i nvok ev i r t ua l #5; //Method j ava / u t i l / Scanner . n e x t I n t : ( ) I
29 : i s t o r e 1
30 : goto 38
33 : a s t o r e 7
35 : i c o n s t 0
36 : i s t o r e 4
38 : a load 6
40 : i nvok ev i r t ua l #5; //Method j ava / u t i l / Scanner . n e x t I n t : ( ) I
43 : i s t o r e 2
44 : goto 52
47 : a s t o r e 7
49 : i c o n s t 0
50 : i s t o r e 5
52 : i c o n s t 0
53 : i s t o r e 7
55 : i c o n s t 0
56 : i s t o r e 7
58 : i l o ad 7
60 : t ab l e sw i t ch { //0 to 6

0 : 104 ;
1 : 107 ;
2 : 127 ;
3 : 164 ;
4 : 147 ;
5 : 177 ;
6 : 190 ;
default : 204 }

104 : iconst m1
105 : i s t o r e 7
107 : iconst m1
108 : i s t o r e 7
110 : i l o ad 4
112 : i f e q 121
115 : i c o n s t 2
116 : i s t o r e 7
118 : goto 204
121 : i c o n s t 3
122 : i s t o r e 7
124 : goto 204
127 : iconst m1
128 : i s t o r e 7
130 : i l o ad 5
132 : i f e q 141
135 : i c o n s t 4
136 : i s t o r e 7
138 : goto 204
141 : i c o n s t 5
142 : i s t o r e 7
144 : goto 204
147 : iconst m1
148 : i s t o r e 7
150 : g e t s t a t i c #7; // F i e l d j a va / l ang /System . out : Ljava / i o / PrintStream ;
153 : ldc #8; // S t r i n g l oop
155 : i nvok ev i r t ua l #9; //Method j ava / i o / PrintStream . p r i n t : ( Ljava / l ang / S t r i n g ; )V
158 : i c o n s t 2
159 : i s t o r e 7
161 : goto 204
164 : iconst m1
165 : i s t o r e 7
167 : i i n c 1 , 1
170 : bipush 6
172 : i s t o r e 7
174 : goto 204
177 : iconst m1
178 : i s t o r e 7
180 : i i n c 2 , 1
183 : bipush 6
185 : i s t o r e 7
187 : goto 204
190 : iconst m1
191 : i s t o r e 7
193 : i l o a d 1
194 : i l o a d 2
195 : iadd
196 : i s t o r e 3
197 : g e t s t a t i c #7; // F i e l d j a va / l ang /System . out : Ljava / i o / PrintStream ;
200 : i l o a d 3
201 : i nvok ev i r t ua l #10; //Method j ava / i o / PrintStream . p r i n t : ( I )V
204 : i l o ad 7
206 : iconst m1
207 : i f i cmpne 58
210 : return

Exception tab l e :
from to ta rg e t type
24 30 33 Class java / lang /Exception

38 44 47 Class java / lang /Exception

}

88



Appendix B

Bytecode Instruction Set

00 (0x00) nop

01 (0x01) aconst_null

02 (0x02) iconst_m1
03 (0x03) iconst_0
04 (0x04) iconst_1
05 (0x05) iconst_2
06 (0x06) iconst_3
07 (0x07) iconst_4
08 (0x08) iconst_5

09 (0x09) lconst_0
10 (0x0a) lconst_1

11 (0x0b) fconst_0
12 (0x0c) fconst_1
13 (0x0d) fconst_2

14 (0x0e) dconst_0
15 (0x0f) dconst_1

16 (0x10) bipush

17 (0x11) sipush

18 (0x12) ldc
19 (0x13) ldc_w
20 (0x14) ldc2_w

21 (0x15) iload
22 (0x16) lload

23 (0x17) fload

24 (0x18) dload

89



25 (0x19) aload

26 (0x1a) iload_0
27 (0x1b) iload_1
28 (0x1c) iload_2
29 (0x1d) iload_3

30 (0x1e) lload_0
31 (0x1f) lload_1
32 (0x20) lload_2
33 (0x21) lload_3

34 (0x22) fload_0
35 (0x23) fload_1
36 (0x24) fload_2
37 (0x25) fload_3

38 (0x26) dload_0
39 (0x27) dload_1
40 (0x28) dload_2
41 (0x29) dload_3

42 (0x2a) aload_0
43 (0x2b) aload_1
44 (0x2c) aload_2
45 (0x2d) aload_3

46 (0x2e) iaload

47 (0x2f) laload

48 (0x30) faload

49 (0x31) daload

50 (0x32) aaload

51 (0x33) baload

52 (0x34) caload

53 (0x35) saload

54 (0x36) istore

55 (0x37) lstore

56 (0x38) fstore

90



57 (0x39) dstore

58 (0x3a) astore

59 (0x3b) istore_0
60 (0x3c) istore_1
61 (0x3d) istore_2
62 (0x3e) istore_3

63 (0x3f) lstore_0
64 (0x40) lstore_1
65 (0x41) lstore_2
66 (0x42) lstore_3

67 (0x43) fstore_0
68 (0x44) fstore_1
69 (0x45) fstore_2
70 (0x46) fstore_3

71 (0x47) dstore_0
72 (0x48) dstore_1
73 (0x49) dstore_2
74 (0x4a) dstore_3

75 (0x4b) astore_0
76 (0x4c) astore_1
77 (0x4d) astore_2
78 (0x4e) astore_3

79 (0x4f) iastore

80 (0x50) lastore

81 (0x51) fastore

82 (0x52) dastore

83 (0x53) aastore

84 (0x54) bastore

85 (0x55) castore

86 (0x56) sastore

87 (0x57) pop
88 (0x58) pop2

91



089 (0x59) dup
090 (0x5a) dup_x1
091 (0x5b) dup_x2

092 (0x5c) dup2
093 (0x5d) dup2_x1
094 (0x5e) dup2_x2

095 (0x5f) swap

096 (0x60) iadd

097 (0x61) ladd

098 (0x62) fadd

099 (0x63) dadd

100 (0x64) isub

101 (0x65) lsub

102 (0x66) fsub

103 (0x67) dsub

104 (0x68) imul

105 (0x69) lmul

106 (0x6a) fmul

107 (0x6b) dmul

108 (0x6c) idiv

109 (0x6d) ldiv

110 (0x6e) fdiv

111 (0x6f) ddiv

112 (0x70) irem

113 (0x71) lrem

114 (0x72) frem

115 (0x73) drem

92



116 (0x74) ineg

117 (0x75) lneg

118 (0x76) fneg

119 (0x77) dneg

120 (0x78) ishl

121 (0x79) lshl

122 (0x7a) ishr

123 (0x7b) lshr

124 (0x7c) iushr

125 (0x7d) lushr

126 (0x7e) iand

127 (0x7f) land

128 (0x80) ior

129 (0x81) lor

130 (0x82) ixor

131 (0x83) lxor

132 (0x84) iinc

133 (0x85) i2l

134 (0x86) i2f

135 (0x87) i2d

136 (0x88) l2i

137 (0x89) l2f

138 (0x8a) l2d

139 (0x8b) f2i

93



140 (0x8c) f2l

141 (0x8d) f2d

142 (0x8e) d2i

143 (0x8f) d2l

144 (0x90) d2f

145 (0x91) i2b

146 (0x92) i2c

147 (0x93) i2s

148 (0x94) lcmp

149 (0x95) fcmpl

150 (0x96) fcmpg

151 (0x97) dcmpl

152 (0x98) dcmpg

153 (0x99) ifeq

154 (0x9a) ifne

155 (0x9b) iflt

156 (0x9c) ifge

157 (0x9d) ifgt

158 (0x9e) ifle

159 (0x9f) if_icmpeq

160 (0xa0) if_icmpne

161 (0xa1) if_icmplt

162 (0xa2) if_icmpge

163 (0xa3) if_icmpgt

164 (0xa4) if_icmple

94



165 (0xa5) if_acmpeq

166 (0xa6) if_acmpne

167 (0xa7) goto

168 (0xa8) jsr

169 (0xa9) ret

170 (0xaa) tableswitch

171 (0xab) lookupswitch

172 (0xac) ireturn

173 (0xad) lreturn

174 (0xae) freturn

175 (0xaf) dreturn

176 (0xb0) areturn

177 (0xb1) return

178 (0xb2) getstatic

179 (0xb3) putstatic

180 (0xb4) getfield

181 (0xb5) putfield

182 (0xb6) invokevirtual

183 (0xb7) invokespecial

184 (0xb8) invokestatic

185 (0xb9) invokeinterface

186 (0xba) unused

187 (0xbb) new

188 (0xbc) newarray

95



189 (0xbd) anewarray

190 (0xbe) arraylength

191 (0xbf) athrow

192 (0xc0) checkcast

193 (0xc1) instanceof

194 (0xc2) monitorenter

195 (0xc3) monitorexit

196 (0xc4) wide

197 (0xc5) multianewarray

198 (0xc6) ifnull

199 (0xc7) ifnonnull

200 (0xc8) goto_w

201 (0xc9) jsr_w

Reserved opcodes:

202 (0xca) breakpoint

254 (0xfe) impdep1

255 (0xff) impdep2

96



Bibliography

[1] Asm.

[2] Cojen.

[3] Gcj: The gnu compiler for java.

[4] Jamaica, the JVM macro assembler.

[5] Janino – an embedded java[tm] compiler.

[6] The jastadd extensible java compiler.

[7] Java code protector.

[8] Java optimize and decompile environment (JODE).

[9] The java programming-language compiler (javac).

[10] Jikes’ home.

[11] Kopi java compiler.

[12] Openjdk.

[13] ProGuard.

[14] Tea trove.

[15] tinapoc - the java reverse engineering toolkit.

[16] Zelix KlassMaster.

[17] Decompiler exception test source. http://www.program-
transformation.org/Transform/DecompilerExceptionTestSource, 2003. from Decompiling
Java Bytecode: Problems, Traps and Pitfalls.

[18] Decompiler fibo test source. http://www.program-
transformation.org/Transform/DecompilerFiboTestSource, 2003.

[19] Origin of 0xcafebabe. http://radio.weblogs.com/0100490/2003/01/28.html, 2003.

[20] Bcel - byte code engineering library (bcel). http://jakarta.apache.org/bcel/manual.html,
June 2006.

[21] Asm - users. http://asm.objectweb.org/users.html, October 2008.

97



[22] Ahpah Software. SourceAgain. http://www.ahpah.com/cgi-bin/suid/~pah/demo_
license.cgi, 2004.

[23] B. Alpern, M. N. Wegman, and F. K. Zadeck. Detecting equality of variables in programs.
In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, page 111, New York, NY, USA, 1988. ACM.

[24] Michael Batchelder and Laurie J. Hendren. Obfuscating java: the most pain for the least
gain. In CC ’07: Proceedings of Compiler Construction, 16th International Conference,
pages 96–110, 2007.

[25] Ben Bellamy, Pavel Avgustinov, Oege de Moor, and Damien Sereni. Efficient local type
inference. SIGPLAN Not., 43(10):475–492, 2008.

[26] Swaroop Belur and Kartik Bettadapura. Jdec: Java decompiler. http://jdec.
sourceforge.net/, 2008.

[27] Russel Impagliazzo Steven Rudich Amit Sahai Salil Vadhan Ke Yang Boaz Barak,
Oded Goldreich. On the (im)possiblity of obfuscating programs.

[28] Eric Bruneton, Romain Lenglet, and Thierry Coupaye. Asm: A code manipulation tool to
implement adaptable systems. Technical report, 2002.

[29] Alex Buckley, Eva Rose, Alessandro Coglio, Borland Software Corporation, Inc. Sun Mi-
crosystems, Inc. Tmax Soft, SavaJe Technologies, and Esmertec AG. Jsr 202: Javatm class
file specification update, 2006.

[30] W.L. Caudle. On inverse of compiling. Sperry-UNIVAC, April 1980.

[31] C. Cifuentes. Reverse Compilation Techniques. Phd thesis, Queensland University of
Technology, 1994.

[32] S. Cimato, A. De Santis, and U. Ferraro Petrillo. Overcoming the obfuscation of java
programs by identifier renaming. J. Syst. Softw., 78(1):60–72, 2005.

[33] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An efficient
method of computing static single assignment form. In POPL ’89: Proceedings of the
16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages, pages
25–35, New York, NY, USA, 1989. ACM.

[34] Markus Dahm. Byte code engineering with the bcel api. Technical report, Freie University,
Berlin, Institut fur Informatik, 2001.

[35] Stephen de Vries. ChainKey java code protection bypass issue, June 2006.

[36] Edsger W. Dijkstra. Letters to the editor: go to statement considered harmful. Commun.
ACM, 11(3):147148, 1968.

[37] Emmanuel Dupuy. Java decompiler. http://java.decompiler.free.fr/, 2008.

[38] Bruce Eckel and Kirk Pepperdine. JDT more correct than Javac. 2006. Published:
\urlhttp://www.theserverside.com/news/thread.tss?thread id=38644.

[39] Torbjrn Ekman and Grel Hedin. The jastadd extensible java compiler. In Object-Oriented
Programming, Systems and Languages (OOPSLA), page 1?18, 2007.

98



[40] Torbjrn Ekman and Grel Hedin. The jastadd system ?- modular extensible compiler con-
struction. Sci. Comput. Program., 69(1-3):14?26, 2007.

[41] Michael Van Emmerik. Static Single Assignment for Decompilation. Phd thesis, The
University of Queensland, 2007.

[42] Mike Van Emmerik. Java decompiler tests. http://www.program-transformation.org/
Transform/JavaDecompilerTests, 2003.

[43] Mike Van Emmerik and Trent Waddington. Using a decompiler for Real-World source
recovery. In WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engi-
neering, page 2736, Washington, DC, USA, 2004. IEEE Computer Society.

[44] Barry Fagin and Martin Carlisle. Connect Four(TM) game, written in ada, 2005.

[45] The Eclipse Foundation. Jdt core component.

[46] Etienne Gagnon, Laurie J. Hendren, and Guillaume Marceau. Efficient inference of static
types for java bytecode. In Static Analysis Symposium, pages 199–219, 2000.

[47] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. Java(TM) Language Specification,
The (3rd Edition) (Java (Addison-Wesley)). Addison-Wesley Professional, 2005.

[48] James Gosling and Henry Mcgilton. The java language environment: A white paper.
Technical report, October 1996.

[49] K John Gough and Diane Corney. Implementing languages other than java on the java
virtual machine. 2001.

[50] Vladimir Grishchenko and Johann Gyger. JadClipse. http://jadclipse.sourceforge.
net/wiki/index.php/Main_Page, 2009.

[51] Peter Haggar. Understanding bytecode makes you a better programmer. http://www.
ibm.com/developerworks/ibm/library/it-haggar_bytecode/, July 2001.

[52] Maurice H Halstead. Elements of software science (Operating and programming systems
series). Elsevier, 1977. Published: Hardcover.

[53] Jochen Hoenicke. JODE. http://jode.sourceforge.net/, 2004.

[54] Johan Janssen and Henk Corporaal. Making graphs reducible with controlled node split-
ting. ACM Trans. Program. Lang. Syst., 19(6):10311052, 1997.

[55] Alex Kalinovsky. Covert Java: Techniques for Decompiling, Patching, and Reverse Engi-
neering. Pearson Higher Education, 2004.

[56] Kearney, Sedlmeyer, Thompson, Gray, and Adler. Software complexity measurement. Com-
mun. ACM, 29(11):10441050, 1986.

[57] Todd B. Knoblock and Jakob Rehof. Type elaboration and subtype completion for java
bytecode. ACM Trans. Program. Lang. Syst., 23(2):243–272, 2001.

[58] Donald E. Knuth. Structured programming with go to statements. ACM Comput. Surv.,
6(4):261301, 1974.

99



[59] Pavel Kouznetsov. Jad - the fast java decompiler. http://www.kpdus.com/jad.html, March
2006.

[60] Douglas Kramer, Bill Joy, and David Spenhoff. The java[tm] platform. Technical report,
Sun Microsystems, May 1996.

[61] Eugene Kuleshov. Using the asm framework to implement common java bytecode trans-
formation patterns. Vancouver, Canada, March 2007.

[62] Karthik Kumar. JReversePro - java decompiler / disassembler. http://jreversepro.
blogspot.com, 2005. JReversePro is a java decompiler / disassembler written in Java.

[63] Mark D. Ladue. When java was one: Threats from hostile byte code. In Proceedings of the
20th National Information Systems Security Conference, 1997.

[64] Xavier Leroy. Java bytecode verification: Algorithms and formalizations. J. Autom. Rea-
son., 30(3-4):235–269, 2003.

[65] Tim Lindholm and Frank Yellin. The Java(TM) Virtual Machine Specification (2nd Edi-
tion). Prentice Hall PTR, April 1999. Published: Paperback.

[66] Mayon Software Research. ClassCracker 3. http://mayon.actewagl.net.au/, 2005.

[67] Jon Meyer and Troy Downing. The Java Virtual Machine. pub-ORA, pub-ORA, 1997.

[68] Jonathan Meyer, Daniel Reynaud, Iouri Kharon, et al. Jasmin, 2004.

[69] Jerome Miecznikowski. New algorithms for a Java decompiler and their implementation in
Soot. Masters thesis, McGill University, 2003.

[70] Jerome Miecznikowski and Laurie Hendren. Decompiling java using staged encapsulation.
In WCRE ’01: Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’01), page 368, Washington, DC, USA, 2001. IEEE Computer Society.

[71] Jerome Miecznikowski and Laurie J. Hendren. Decompiling java bytecode: Problems, traps
and pitfalls. In CC ’02: Proceedings of the 11th International Conference on Compiler
Construction, page 111?127, London, UK, 2002. Springer-Verlag.

[72] Akito Monden, Hajimu Iida, Ken ichi Matsumoto, Koji Torii, and Katsuro Inoue. A
practical method for watermarking java programs. In COMPSAC ’00: 24th International
Computer Software and Applications Conference, page 191197, Washington, DC, USA,
2000. IEEE Computer Society.

[73] Alan Mycroft. Type-Based decompilation (or program reconstruction via type reconstruc-
tion). In ESOP ’99: Proceedings of the 8th European Symposium on Programming Lan-
guages and Systems, page 208223, London, UK, 1999. Springer-Verlag.

[74] Nomair A. Naeem. Programmer-Friendly Decompiled Java. Masters thesis, 2007.

[75] Nomair A. Naeem, Michael Batchelder, and Laurie Hendren. Metrics for measuring the
effectiveness of decompilers and obfuscators. In ICPC ’07: Proceedings of the 15th IEEE
International Conference on Program Comprehension, page 253258, Washington, DC, USA,
2007. IEEE Computer Society.

100



[76] Nomair A. Naeem and Laurie Hendren. Programmer-Friendly decompiled java. In ICPC
’06: Proceedings of the 14th IEEE International Conference onProgram Comprehension
(ICPC’06), page 327—336. IEEE Computer Society, 2006.

[77] Godfrey Nolan. Decompiling Java. APress, 2004.

[78] Tim Ottinger. Meaningful names. http://tottinge.blogsome.com/meaningfulnames/, 1997.

[79] David J. Pearce. The java compiler kit (jkit).

[80] Todd A Proebsting and Scott A Watterson. Krakatoa: Decompilation in java (does byte-
code reveal source?). pages 185–197, 1997.

[81] Lyle Ramshaw. Eliminating go to’s while preserving program structure. J. ACM, 35(4):893–
920, 1988.

[82] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value numbers and redundant
computations. In POPL ’88: Proceedings of the 15th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, page 1227, New York, NY, USA, 1988. ACM.

[83] Marco Schmidt. List of java bytecode compilers. http://schmidt.devlib.org/java/bytecode-
compilers.html.

[84] SourceTec Software Inc. SourceTec (Jasmine). http://www.sothink.com/product/
javadecompiler/index.htm, 1997.

[85] R. F. Strk, J. Schmid, and E. Brger. Java and the Java Virtual Machine: Definition,
Verification and Validation. Springer-Verlag, 2001.

[86] Robert Tolksdorf. Programming languages for the java virtual machine jvm. http://www.is-
research.de/info/vmlanguages/index.html.

[87] Raja Valle-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay Sun-
daresan. Soot - a java bytecode optimization framework. In CASCON ’99: Proceedings of
the 1999 conference of the Centre for Advanced Studies on Collaborative research, page 13.
IBM Press, 1999.

[88] Hanpeter van Vliet. Mocha, the java decompiler, 1996.

[89] Bill Venners. Inside the Java Virtual Machine. McGraw-Hill, Inc., New York, NY, USA,
1996.

101


