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Abstract—Software watermarking involves embedding a
unique identifier within a piece of software, to discourage
software theft. The global revenue loss due to software piracy
was estimated to be more than $50 billion in 2008. We survey
the proposed software watermarking algorithms based on code
re-ordering. This family of static watermarks use semantics-
preserving transformations to encode a watermark in a permuta-
tion of the existing code. We describe the existing techniques and
highlight the short-comings of these algorithms, namely that they
are highly susceptible to semantics preserving transformations
attacks.
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graph colouring; program transformation;java; bytecode;

I. INTRODUCTION

Software theft, also known as software piracy, is the act of
copying a legitimate application and illegally distributing that
software, either free or for profit. Legal methods to protect
software producers such as copyright laws, patents and license
agreements [7] do not always dissuade people from stealing
software, especially in emerging markets where the price of
software is high and incomes are low. Ethical arguments, such
as fair compensation for producers, by software manufacturers,
law enforcement agencies and industry lobbyists also do little
to counter software piracy. The global revenue loss due to
software piracy was estimated to be more than $50 billion in
2008 [2].

Technical measures have been introduced to protect digital
media and software, due to the ease of copying computer files.
Some software protection techniques, of varying degrees of
success, can be used to protect intellectual property contained
within Java class-files. Java bytecode is higher level than
machine code and is relatively easy to decompile with only a
few problems to overcome [11].

Software watermarking involves embedding a unique iden-
tifier within a piece of software. It does not prevent theft but
instead discourages software thieves by providing a means to
identify the owner of a piece of software and/or the origin of
the stolen software [17]. The hidden watermark can be used,
at a later date, to prove ownership of stolen software. It is also
possible to embed a unique customer identifier in each copy
of the software distributed which allows the software company
to identify the individual that copied the software.

In this paper, we examine code re-ordering based software
watermarking algorithms; these algorithms are static soft-
ware watermarking techniques which use semantics-preserving
transformations to encode a watermark in a permutation of
the existing code. We report previous findings, describe some
recent additions and conclude by suggesting a direction for
future work.

II. BACKGROUND

A. Software Watermarking

Software watermarks can be broadly divided into two cate-
gories: static and dynamic [6]. The former is embedded in the
data and/or code of the program, while the latter is embedded
in a data structure built at runtime.

A watermark is embedded into a computer program through
the use of an embedder; it can then be extracted by an
extractor or verified by a recogniser. The former extracts
the original watermark, while the latter merely confirms the
presence of a watermark [28]. A watermark recognition or
extraction algorithm may also be classified as blind, where the
original program and watermark is unavailable, or informed,
where the original program and/or watermark is available [27].

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recognise
a watermark from a partial program. Semantics preserving
transformations, by definition, result in programs which are
syntactically different from the original, but whose behaviour
is the same. The attacker can attempt, by performing such
transformations, to produce a semantically equivalent program
with the watermark removed. Redundancy and recognition
with a probability threshold may help with these problems
[16].

The runtime cost of a program with an embedded watermark
should not differ significantly from the original program but
some transformations applied by the watermark could have an
effect on size and execution time [19].

B. Watermarking by Permutation

It is well known that information can be hiding in the
order of lists [26] and this can be exploited for watermarking
purposes. Given a list of size n we can store log2n! bits as
there are n! permutations of the items in n.



TABLE I: Factorial Numbers

base 8 7 6 5 4 3 2 1
place value 7! 6! 5! 4! 3! 2! 1! 0!
in decimal 5040 720 120 24 6 2 1 1

The basic idea is to convert the watermark into an integer
W and re-order the list l as the W th permutation of l. For
example, to embed the watermark number 22 into the list
{1, 2, 3, 4} we have to find the 11th permutation.

The factorial number system is useful for finding permuta-
tions of lexicographically ordered sets. Factorials are used as
the place values in the factorial number system, as shown in
table I.

For example, to convert the decimal number 22 into the
factorial number system:

2210 = 3× 6 + 2× 2 + 0× 1 + 0× 0 = 3200!

To find the 22nd permutation of {1, 2, 3, 4}, each of the
factorial number digits acts as an index (starting at position
0) which shows the number to remove next to build up the
permutation set.

The 22nd permutation is therefore {4, 3, 1, 2}.

III. BASIC BLOCK RE-ORDERING

Davidson and Myhrvold [8] proposed one of the first soft-
ware watermarking algorithms which encodes the watermark
by basic block re-ordering. The embedding algorithm was
described in a patent issued to Microsoft but the extraction
algorithm was not discussed. Collberg et al. [18] proposed
a method of watermark extraction and implemented the DM
algorithm in Sandmark [4].

Definition 1. Basic Block [1]: A basic block is a sequence of
consecutive statements in which the flow of control enters at
the beginning and leaves at the end without halt or possibility
of branching except at the end.

Collberg et al.’s extraction algorithm is an informed ex-
traction algorithm; that is, it requires the original P and the
watermarked program Pw to extract the watermark w. The
embedding algorithm re-orders only unique basic blocks in
all methods as there is no way of knowing which method(s)
the watermark is stored in. This would result in the extraction
of many watermarks; Collberg et al. overcome this in their
implementation by prefixing and suffixing magic numbers to
the watermark to guarantee recognition.

Definition 2. Unique Basic Block [18]: A basic block is
unique if and only if no other block in the graph contains
the same instructions.

Listing 1: Bubble Sort in Java

public static void bubbleSort(int[] arr) {
boolean swapped = true;
int j = 0;
int tmp;
do {
swapped = false;
j++;
for (int i = 0; i < arr.length - j; i++) {

if (arr[i] > arr[i + 1]) {
tmp = arr[i];
arr[i] = arr[i + 1];
arr[i + 1] = tmp;
swapped = true;

}
}

} while(swapped);
}

Non-unique basic blocks can be made unique by inserting
bogus code (such as no op instructions) until all the basic
blocks are unique [5].

The first step in the DM algorithm is to convert the water-
mark into a number w; then the wth permutation [14] of a set
of basic blocks B is generated. The permutated basic blocks
B′ are re-linked to retain the original program semantics and
B is replaced by B′ to produce the watermarked program P ′.

To extract a watermark the first step is to compare the or-
dering of the original basic blocks against the new ordering, to
obtain the permutation number; this number is then converted
back into the watermark number.

A program method containing n unique basic blocks can
embed [log2n!] watermark bits. The method should not contain
exception handling code as this can impose an ordering of
basic blocks which is difficult or impossible to alter [18].

Figure 1(a) shows a linearised control flow graph1 [1] for
the Java bubble sort program in listing 1. The program method
contains 7 unique basic blocks (excluding begin and end)
which means that this method can store 12 bits.

Figure 1(b) shows the control flow graph after embed-
ding the watermark 10110110102 (73010). The linearised
set of basic blocks for the control flow graph is B =
{B0, B1, B2, B3, B4, B5, B6} of which the 730th permutation
is B′ = {B1, B0, B2, B4, B6, B3, B5}. The blocks in B′ are
relinked to retain the original control flow order by inserting
additional goto statements where neccesary, for example at the
end of B0.

Hattanda et al. [13] evaluated the DM watermarking al-
gorithm by watermarking several C programs and analysing
metrics such as program size and program performance. In
their implementation they found that the size increase of a
watermarked program was between 9% and 24% while the
performance was 86% to 102% of the original program. The
2% performance increase was due to the re-ordered code
containing no redundant jump instructions, and that it showed

1The code shown is Jimple [20] - a 3-address-code intermediate represen-
tation for Java bytecode, used by the Soot optimiser [24]



end

begin

B4:
i1 = i1 + 1;

B5:
$i9 = lengthof r0;
$i10 = $i9 - i0;
if i1 < $i10 goto B2;

B6:
if z0 ! = 0 goto B1;

B0:
int[] r0;
boolean z0;
int i0, i1, i2, $i3, $i4, $i5;
int $i6, $i7, $i8, $i9, $i10;
r0 := @parameter0: int[];
i0 = 0;

B1:
z0 = 0;
i0 = i0 + 1;
i1 = 0;
goto B5;

B2:
$i3 = r0[i1];
$i4 = i1 + 1;
$i5 = r0[$i4];
if $i3 <= $i5 goto B4;

B3:
i2 = r0[i1];
$i6 = i1 + 1;
$i7 = r0[$i6];
r0[i1] = $i7;
$i8 = i1 + 1;
r0[$i8] = i2;
z0 = 1;

(a) before wm

end

begin
goto B0;

B4:
i1 = i1 + 1;
goto B5;

B5:
$i9 = lengthof r0;
$i10 = $i9 - i0;
if i1 < $i10 goto B2;
goto B6;

B6:
if z0 ! = 0 goto B1;
goto end;

B0:
int[] r0;
boolean z0;
int i0, i1, i2, $i3, $i4, $i5;
int $i6, $i7, $i8, $i9, $i10;
r0 := @parameter0: int[];
i0 = 0;
goto B1;

B1:
z0 = 0;
i0 = i0 + 1;
i1 = 0;
goto B5;

B2:
$i3 = r0[i1];
$i4 = i1 + 1;
$i5 = r0[$i4];
if $i3 <= $i5 goto B4;
goto B3;

B3:
i2 = r0[i1];
$i6 = i1 + 1;
$i7 = r0[$i6];
r0[i1] = $i7;
$i8 = i1 + 1;
r0[$i8] = i2;
z0 = 1;
goto B4;

(b) after wm

Fig. 1: Linearised Control Flow Graphs for the Java Bubble Sort program, listing 1



more locality than the original - greater locality increases
performance and increasing locality is a common optimisation
performed by compilers [9].

Hattanda et al. reported a data-rate of approximately 0.2%
of program size (in bytes) based on their implementation that
used a partial permutation scheme, which only used 6 basic
blocks. Collberg et al.’s implementation was not constrained
in this way and the data rate is dependent on the number of
basic blocks in program methods.

The DM algorithm is highly unstealthy due to the fact that a
normal compiler would not linearise the control flow graph as
in DM watermarked programs [5]. A simple way to discover
a DM watermark is to examine the ratio of goto statements
to the total number of instructions - programs with the DM
watermark show a high ratio compared to an unwatermarked
program [18] (you can clearly see the difference in the number
of goto statements in figure 1).

The biggest flaw with the DM watermark is that it is
highly fragile; that is, it is not resilient to semantics-preserving
transformations. For example, any transformation which re-
ordered the basic blocks would eliminate the watermark [12].

Anckaert et al. [23] implemented and evaluated a version
of the DM watermarking algorithm for machine code where
groups of chains of basic blocks are re-ordered.

Definition 3. Basic Block Chain [3]: A set of basic blocks
that must be placed consecutively.

They concluded that their watermarking algorithm is stealth-
ier as it has a minimal affect on code locality.

IV. EQUATION RE-ORDERING

Shirali-Shahrez et al. [22] proposed a software watermark
scheme based the re-ordering of operations in mathematical
equations. The idea involves re-ordering symmetric mathe-
matical operations, such as addition, to preserve program
semantics.

For example, equation 1 and equation 2 are equivalent and
we could consider a 0 bit encoding for the first ordering, and
a 1 bit encoding for the second ordering.

x = y + z (1)
x = z + y (2)

Not all operations are symmetric and the watermarking
algorithm only re-orders safe swappable binary operations to
ensure the watermarked equation is equivalent.

Definition 4. Safe swappable operation [22]: An operation
is safe swappable if it is symmetric and at least one of it’s
operands is constant.

In order to produce a blind watermarking extraction al-
gorithm an ordering is defined on the operands of a safe
swappable operation:

1) If both operands are constant they are ordered according
to their string representation.

×

× ×

1

+

25 y

x

Fig. 2: Equation tree for equation 4

2) If one operand is constant and the other is not then the
constant operand would come first.

The sorted order of operands is retained to encode a 0 bit
whereas the operands are reversed to encode a 1 bit. The
extraction algorithm can then check to see if operands are
in sorted order or not, to obtain 0 or 1.

Equation 3 contains 3 safe swappable operations: 5 × y,
x+ 1 and 2× (x+ 1).

5× y + 2× (x+ 1) (3)

Of these 3 operations x + 1 is unordered according to the
ordering definition; therefore the equation must be re-ordered
as (4) before watermarking.

5× y + 2× (1 + x) (4)

In order to encode a watermark we perform a pre-order
traversal of the equation tree (see figure 2), swapping opera-
tions where necessary to encode bits. For example to encode
the watermark 0112 we leave the order of 5 × y and change
the order of 2× (1 + x) and 1 + x, giving us equation 5.

5× y + (x+ 1)× 2 (5)

The data-rate of this watermarking technique is related to
the number of safe-swappable operations within a program.
It is likely that there will be many, but the watermark will
probably need to be split into pieces as most equations will
only encode a small number of bits individually.

Zonglu et al. [21] proposed a very similar technique using
a re-ordering based on operand coefficients. Neither of these
techniques cannot be applied to source-code as the compiler
itself may re-order the operands and even when applied to
bytecode or machine code this technique is highly susceptible
to semantics-preserving transformations. Any re-ordering of
the operands after watermarking will remove the watermark.



V. CONSTANT POOL RE-ORDERING

Gong et al. [10] proposed a watermarking scheme, CPW,
for Java based on the ordering of a class file’s constant pool.

A Java compiler compiles Java source code into intermedi-
ate Java Byte Code in files ending with the extension .class.

Java class files are divided into 10 areas:
Magic Number

0xCAFEBABE
Version Numbers

The minor and major versions of the class file
Constant Pool

Pool of constants for the class
Access Flags

e.g. abstract, static, etc
This Class

The name of the current class
Super Class

The name of the super class
Interfaces

Any interfaces in the class
Fields

Any fields in the class
Methods

Any methods in the class
Attributes

Any attributes of the class
The constant pool is an array of variable length elements

containing every constant used in the Java class [25]. Constants
are referenced by an index throughout the bytecode. Some
entries in the constant pool are direct references to a constant
while other entries are references to other members in the
constant pool - these are indirect constants. Each constant in
the pool is preceded by a tag denoting it’s type, for example
class, integer, Utf8 [15].

The CPW scheme involves re-ordering the direct constants
corresponding to the W th permutation of the direct constants
where W is an integer watermark.

Figure 3 shows a conceptual diagram of listing 2; the
constant pool is shown before and after watermarking. The
set of direct constants D before watermarking is D =
{7, 8, 9, 10, 11, 12, 13, 14, 18, 21, 22, 23, 24, 25, 26, 27, 28}.

If we want to embed the watermark 10110110102 (73010)
we first obtain the 730th permutation of D; this is D′ =
{7, 8, 9, 10, 11, 12, 13, 14, 18, 21, 23, 22, 24, 26, 28, 25, 27}.
Figure 3 shows the constant pool after watermarking, on
the right, where the direct constants have been re-numbered
according to the permutation.

To extract the watermark we calculate the original ordering
of the direct constants (in the same way as the original Java
compiler did) and compare with the watermarked constant
pool to find the permutation number W .

Gong et al. evaluated their algorithm by embedding wa-
termarks into 4000 random class files downloading from the
Internet and concluded that it has a good robustness but small
capacity. However, the CPW algorithm is far from robust -

Listing 2: Hello World in Java

public class HelloWorld {
public static void main(String[] args) {
System.out.println("Hello World");

}
}

any further re-ordering of the constant pool would destroy the
watermark.

VI. CONCLUSION

We have presented a survey of software watermarking
schemes based on code re-ordering. This family of watermarks
are highly susceptible to semantics-preserving transformation
attacks [12], and can be unstealthy. The DM watermark is
highly unstealthy due to addition of large numbers to goto
statements inserted to preserve the original control-flow after
re-ordering.

Any further re-ordering of a program watermarked with any
of the presented algorithms will likely destroy the watermark.
In fact, even re-watermarking the program will likely destroy
the watermark.

Academic research continues in this area, with the latest
paper published last year [21]. We believe that further research
should instead focus on dynamic software watermarking tech-
niques which, in theory, should be resilient to semantics-
preserving transformations; thus providing a robust technique
for the protection of software.
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