
An Evaluation of Current Java Bytecode Decompilers

James Hamilton, Sebastian Danicic
Department of Computing

Goldsmiths, University of London
United Kingdom

james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

Abstract—Decompilation of Java bytecode is the act of
transforming Java bytecode to Java source code. Although
easier than that of decompilation of machine code, problems
still arise in Java bytecode decompilation. These include type
inference of local variables and exception-handling.

Since the last such evaluation (2003) several new commercial,
free and open-source Java decompilers have appeared and some
of the older ones have been updated.

In this paper, we evaluate the currently available Java
bytecode decompilers using an extension of the criteria that
were used in the original study. Although there has been a slight
improvement since this study, it was found that none passed
all the tests, each of which were designed to target different
problem areas. We give reasons for this lack of success and
suggest methods by which future Java bytecode decompilers
could be improved.

Keywords-java; bytecode; decompilation;

I. INTRODUCTION

Compilation is the act of transforming a high-level lan-
guage, into a low-level language such as machine code
or bytecode. Decompilation is the reverse. It is the act of
transforming a low-level language into a high-level language
[1]. Java source code is compiled into an intermediate
language known as Java bytecode. A Java virtual machine
executes Java bytecode in class files conforming to the class
file specification which is part of the Java Virtual Machine
Specification [2] and updated in JSR202 [3]. The open
specification allows tools other than Sun’s Java compiler to
generate and/or manipulate Java bytecode.

Java bytecode can be generated in three ways:
1) from a Java source program using a Java compiler

(such as Sun’s javac),
2) using a language other than Java to Java Bytecode

compiler (such as JGNAT1) or
3) by writing a class file by hand2.
Java bytecode can also be manipulated by tools such

as obfuscators and optimisers which perform semantics-
preserving transformations on bytecode contained within a

1JGNAT is an open-source Ada compiler which compiles Ada source to
Java bytecode

2The tedious task of hand-writing a Java class file can be made easier
by using a Java assembler, such as Jasmin [4], which accepts a human
readable form of Java bytecode instructions and generates a Java class file.

Java class file. Figure I shows the Java bytecode cycle from
generation to decompilation to Java source.

Java bytecode retains type information about fields,
method returns and parameters but it does not, for ex-
ample, contain type information for local variables. The
type information in the Java class file renders the task
of decompilation of bytecode easier than decompilation of
machine code [5]. Decompiling Java bytecode, thus, requires
analysis of most local variable types, flattening of stack-
based instructions and structuring of loops and conditionals.
The task of bytecode decompilation, however, is much
harder than compilation. We show that often decompilers
cannot fully perform their intended function [6].

Decompilation has many applications including legitimate
uses, such as the recovery of lost source code for a crucial
application [7] and non-legitimate uses such as reverse-
engineering a proprietary application. Consider the case in
which a company has lost the source code for their applica-
tion and hence to continue development on the software they
require recovery of source code from Java class files. The
company must decompile the Java class files and attempt to
recover Java source equivalent to the originally lost source.
In this case, in comparison to an illegitimate use, it is likely
that the company knows more about how the Java class files
were generated. Knowledge of how class files are generated
provides information useful in the recovery of the original
source as a decompiler can be optimised for the compiler
used.

If the purpose of decompilation is to simply understand a
program, the syntactical correctness of a complete decom-
piled program may not be a high priority. Correct portions
of an incorrect program could help in the understanding of
a program, in contrast to the case of source recovery where
correct source is needed.

In this paper we present an evaluation of existing com-
mercial, free and open-source decompilers and attempt to
measure their effectiveness using a series of test programs.

We base this paper on a survey performed in 2003 [8]
which tested 9 decompilers. Some of the originally tested
decompilers have been updated, some are now unavailable
and there are also some new decompilers. We perform
the original tests with some new decompilers and re-test
other decompilers with the latest version of Java class



Figure 1. Compilation and decompilation of Java Bytecode

files. We also add some of our own tests which add some
decompilation problem areas which were not included in the
original survey.

This paper is organised as follows: In Section II, the
method of decompiler evaluation is described. In Section III,
we present the results of our evaluation and in Section IV,
we present our conclusions.

II. MEASURING THE EFFECTIVENESS OF JAVA
DECOMPILERS

The effectiveness of a Java decompiler, depends heavily
on how the bytecode was produced. Arbitrary bytecode can
contain instruction sequences for which there is no valid
Java source due to the more powerful and less restrictive
nature of Java bytecode. For example there are no arbitrary
control flow instructions in Java. In fact, many Java bytecode
obfuscators rely on the fact that most decompilers fail when
encountering unexpected, but valid, bytecode sequences [9].

Naeem et al. [10] suggest using software metrics [11],
[12] for measuring the effectiveness of decompilers. They
compare the output of several decompilers against the input
programs using software metrics. Software metrics are a
good measure of the complexity of the output of a de-
compiler, however they cannot quantify the effectiveness
of the general output of a decompiler. For each program-
decompiler pair, we give a score between 0 and 9 (see
Figure 2). A score of 0 is a perfect, or good, decompilation
whereas 9 means that the decompiler failed and no output
was produced.

The first two categories, 0 and 1 indicate output which is
both syntactically correct Java and semantically equivalent
to the original. Category 1 programs, however contain code
which is less readable (e.g. excessive use of labels, while
loops instead of for loops etc) and/or code for which no
type inference has been performed.

Programs classified as 2, 3, 4 indicate varying levels
of syntactically incorrect programs. A category 2 program
indicates a program with small syntax errors, such as a

missing variable declaration, that can be easily corrected to
produce a semantically correct program. Category 3 pro-
grams contain syntactic errors which are harder to correct,
such as programs with goto statements (which do not exist
in Java), and category 4 programs contain extreme syntax
errors which are very difficult or impossible to correct.

Programs classified as 5, 6, 7 are syntactically correct
but are not semantically equivalent to the input program.
These categories of programs are, in a sense, worse than
syntactically incorrect programs as they re-compile without
error and may contain subtle semantic errors which are
not obvious, thus large programs in these categories would
require a lot of testing to ensure their correctness. Programs
in category 5 contain minor semantic errors which when
corrected produce a program semantically equivalent to the
input program. Category 6 and 7 indicate programs that are
dramatically semantically different from the input program.

Programs classified as category 8 are incomplete programs
which are not decompiled in their entirety, for example a
program which is missing inner classes.

Category 9 indicates that a decompiler failed to produce
any output at all, and most likely failed to parse the input
file. Problems could occur due to arbitrary bytecode or the
latest Java class files.

A. Tests

Different Java bytecode decompilation problems are tested
using programs taken from different sources which each
provide a specific area to test.

The original survey showed that different decompilers are
sometimes better in different areas but no decompiler passed
all the tests [8]. Of the decompilers tested in the original
survey, JODE performed the best by correctly decompiling
6 out of the 9 test programs, with Dava and Jad close behind.

In our tests we include two types of Java class file: those
generated by javac and those generated by other tools.
Java source files are compiled with javac version 1.6.0 10.
Arbitrary Java class files include two hand-written using



Score semantics syntax output result examples
0 correct correct semantically and syntactically

correct program with perfect/-
good source code layout

perfect decompilation

1 correct correct semantically and syntactically
correct program with ‘ugly’
source code layout and/or no
type inference

unreconstructed control flow
statements, unreconstructed
string concatenation, unused
labels, no type inference

2 incorrect incorrect easy-to-correct syntax errors
which produce a semantically
correct program

boolean typed as int, missing
variable declaration

3 incorrect incorrect difficult (but possible) to cor-
rect syntax errors which pro-
duce a semantically correct
program

code with goto statements

4 incorrect incorrect very difficult (or nearly impos-
sible) to correct syntax errors
required to produce a semanti-
cally correct program

invalid variable use, obviously
incorrect code, massive source
re-write required

5 incorrect correct easy to correct semantic errors
which produce a semantically
correct program

missing typecasts

6 incorrect correct difficult (but possible) to cor-
rect semantic errors which pro-
duce a semantically correct
program

incorrect control flow

7 incorrect correct very difficult (or nearly impos-
sible) to correct semantic errors
required to produce a semanti-
cally correct program

incorrectly nested try-catch
blocks, massive source re-write
required

8 incorrect incorrect incomplete decompilation missing large sections of
source, missing inner classes

9 Fail Fail decompiler fails upon execu-
tion/produces no source output

decompiler fails to parse arbi-
trary bytecode

Figure 2. Decompilation correctness classification

the Jasmin assembler version 2.1, one optimised using
the Soot Framework and one compiled by JGNAT. We
use the test programs from the original survey, where
possible, and also extend the evaluation to include more
problem areas such as the correct decompilation of try-
finally blocks and local variable slot re-use. The Java
class files were decompiled using each decompiler and
the result was classified into one of our ten categories
of decompiler effectiveness. The class files considered were:

Fibonacci is a trivial test for a decompiler. It is a
fairly simple program to output the Fibonacci number of a
given input number.
Casting [13] is a simple program to test if a decompiler
can correctly detect the need to cast a char to an int.
InnerClass [13] is a simple program containing inner
classes.
TypeInference [14] is a program which tests a decompiler’s
ability to perform type inference for local variables. A
specific variable in the program is difficult for a decompiler
to type because it depends on the value of another variable.

The original paper [14], written by the developers of
Dava, tested three different decompilers against Dava.
They showed that their decompiler could correctly type the
variables whereas the other decompilers failed to do so.
TryFinally is a simple test to determine whether
decompilers can decompile the implementation of try-
finally blocks using inline code instead of Java bytecode
subroutines. Many of the old decompilers expect the use of
subroutines for try-finally blocks but javac 1.4.2+ generates
inline code instead.
ControlFlow [14] is a program which tests a decompiler’s
handling of control flow.
Exceptions [14] contains two intersecting try-catch blocks.
The intersecting try-catch block is allowed in Java bytecode
but would not be generated by a Java compiler - the
program here is created using Jasmin. The program used
in the original tests is incorrect and Dava, which should
be able to decompile the program, exits with a null pointer
exception. A re-written version is used in our tests based
on the call graph in the original paper [14].
Optimised was generated by using the Soot optimiser



on the TypeInference test program. An example of an
optimisation that has been performed is the removal of the
dup opcode (which duplicates the value on the top of the
stack) and replacing it with load and store instructions.
VariableReUse re-uses the local variable slot 0 in the main
method. At the start of the method local variable slot 0 is of
type String[] but it is then re-used as type int. A compiler
would not generate such code that we created using Jasmin.
Multiple types for local variables is valid bytecode as long
as the lifetimes of the two uses of the local variable does
not overlap [15] i.e. a local variable only has the type (and
value) of the last variable stored in it.
Ada [16] is an implementation of the game Connect Four
originally written in Ada and compiled with JGNAT to Java
bytecode. This program provides an example of a source
language other than Java for a Java decompiler to handle.
Such programs potentially contain code which cannot easily
be decompiled to Java source due to unexpected bytecode
sequences generated by a non-Java to Java bytecode
compiler. The original survey used a different Ada program
compiled to Java bytecode which we could not obtain.

III. THE EVALUATION

The following decompilers were tested:

Mocha [17], released as a beta version in 1996, was
one of the first decompilers available for Java along with
a companion obfuscator named Crema. Mocha can only
decompile earlier versions of Java as it is an old program.
Mocha is obsolete but is still available on several websites
as the original license permitted its free distribution.
SourceTec (Jasmine) [18], also known as Jasmine, is
another unmaintained old compiler which is a patch to
Mocha. The installation process involves providing Mocha’s
class files which are then patched by SourceTec (Jasmine).
SourceAgain [19] was a commercial decompiler from
Ahpah Software, Inc. It is no longer sold or supported
though they keep a web-based version of their decompiler
available on their website.
ClassCracker3 [20] is another commercial decompiler
which seems not to have been updated for at least four
years. An evaluation version of the program is available at
the Mayon Software Research’s website which states that it
will decompile the first 5 methods of a Java class file.
Jad [21] is a popular decompiler that is free for non-
commercial use but is no longer maintained. It is a closed
source program written in C. The last update for Linux
and Windows version for Jad was in 2001, while a small
update added an OS X version in 2006. Jad is used as
the back-end by many decompiler GUIs [21] including an
Eclipse IDE plug-in named JadClipse [22].
JODE [23] is an open-source decompiler that also includes
a bytecode optimiser. The latest version 1.1.2-pre1 was
released February 24, 2004.

jReversePro [24] is an open-source disassembler and
decompiler project which is currently at version 1.4.2
though hasn’t been updated for several years.
Dava [14], [25]–[28] is a decompiler which is part of the
Soot Java Optimisation Framework [29] from the Sable
Research Group3 at McGill University in Montreal, Quebec,
Canada. Soot is under constant development at the Sable
Research Group and the latest release was version 2.3.0 on
June 3, 2008.
jdec [30] is an open-source decompiler written in Java
which was last released at version 2.0 in May, 2008. jdec is
aimed at the decompilation of bytecode generated by Sun’s
javac compiler and therefore will probably have problems
decompiling the arbitrary code.
Java Decompiler [31] is a free Java decompiler aimed at
decompiling Java 5 and above class files. It is in its early
stages, at only version 0.2.7, and has been in development
for about a year.
NMI Code Viewer was included in the original survey
with results ‘startlingly similar’ to Jad [8]. We do not
include this (unmaintained) decompiler as, in actual fact, it
is a front-end for Jad [21].
jAscii was included in the original survey, with poor
results [8], but it is now obsolete and unavailable for our
evaluation.

A. Results

ClassCracker3 did not decompile any of our test programs
completely with just the method signatures in the resulting
Java source file.
Dava, being a decompiler aimed at arbitrary bytecode,
performed better than other decompilers in tests with class
files that were not generated by javac. However, for the
others it did not perform as well. It could not decompile the
trivial, TryFinally program which most other decompilers
could. Dava attempts to reconstruct the program’s control
flow whereas other decompilers recognise the pattern of a
try-finally block and reverse it. Dava perfectly decompiles
the Exception test program which is unsurprising as this test
program is from the creators of Dava. Interestingly, Dava
was unable to correctly decompile the TypeInference test
program, which was created originally to show that Dava
outperforms other decompilers, due to a failure to insert a
simple typecast for an argument in a method invocation.
However, the main problem that the TypeInference test
program is designed to show, type inference of a specific
variable, was performed correctly.
Jad produced some pleasing results, with a similar score to
JODE. Jad performs best with javac generated code and
fails to correctly decompile arbitrary bytecode. Jad also
fails the trivial TryFinally test program which is due to
Jad being outdated - finally blocks used to be implemented

3http://www.sable.mcgill.ca/



decompiler type status 2003 version current version last update
Mocha free obsolete 0.1b 0.1b 1996

SourceTec commercial obsolete 1.1 1.1 1997
SourceAgain commercial obsolete 1.10j 1.1 2004

Jad free unmaintained 1.5.8e 1.5.8e 2001
JODE open-source unmaintained unknown 1.1.2-pre1 2004

ClassCracker3 commercial obsolete 3.01 3.02 2005
jReversePro open-source unmaintained 1.4.1 1.4.2 2005

Dava open-source current 2.0.1 2.3.0 2008
jdec open-source current N/A 2.0 2008

Java Decompiler free current N/A 0.2.7 2008

Figure 3. Decompilers: Some of the currently available decompilers have, since the original survey [8] in 2003, been upgraded, become unmaintained or
obsolete. There are two new decompilers, jdec and Java Decompiler which have become available since 2003. Many commercial Java bytecode decompilers
have become obsolete and the currently maintained decompilers are open-source and/or free. In the original survey JODE was determined to be the best
by decompiling 6 out of 9 programs correctly, closely followed by Jad and Dava.

Figure 4. Decompiler Test Results: Each decompiler was tested in different problem areas, with 6 test programs representing javac generated bytecode
and 4 representing arbitrary bytecode. The results are given using our effectiveness measurement scale with 0 being a perfect decompilation and 9 being
the case in which a decompiler fails. No decompiler was able to correctly decompile all our test programs with JODE correctly decompiling the most
correctly.

(a) Decompiler Effectiveness (b) Correct Decompilations

Figure 5. Decompiler Effectiveness



using subroutines but javac no longer generates subroutines
and instead in-lines finally blocks. Jad correctly decompiles
three javac generated class files whereas Dava only correctly
decompiles two of these, which demonstrates the difference
between between the two types of decompiler. Jad is com-
parable to Java Decompiler and SourceAgain and overall
performs very similarly.
Java Decompiler is a newer decompiler which outperforms
all other decompilers in terms of our effectiveness measures.
The reason which Java Decompiler out performs Dava is
that it is correctly able to decompile the TryFinally and
InnerClass test programs, which are both javac generated.
Java Decompiler has some trouble decompiling arbitrary
bytecode but does this better than most of the other decom-
pilers, except Dava. Java Decompiler outperforms Jad and
JODE by performing slightly better with arbitrary bytecode.
Java Decompiler decompiles 3 programs correctly, two less
than JODE. Java Decompiler produces the same mistake in
the TypeInference test program as Dava - a missing typecast.
Java Decompiler and Dava fall behind in the number of
correct decompilations because of this (easily corrected)
syntactic mistake.
jdec is another javac orientated decompiler but does not
perform as well as the other newer decompilers. Java
Decompiler can correctly decompile inner classes while
jdec cannot. jdec also cannot decompile arbitrary bytecode
correctly.
JODE has a similar overall result to Dava and Jad but is
beaten using our effectiveness measures by Java Decompiler.
In comparison to Java Decompiler and Jad, JODE is able to
decompile 5 test programs perfectly whereas Java Decom-
piler and Jad decompile 3 correctly. Surprisingly JODE is
unable to correctly decompile the TryFinally test program.
JODE was the best decompiler in the original survey and is
still one of the best in our evaluation.
jReversePro performed badly in many of the tests and was
unable to decompile the test programs correctly, as it can
not parse the latest class file format. In fact, jReversePro
failed to parse many of the test programs and only partially
decompiled others. The remaining programs produced were
semantically incorrect.
Mocha is an obsolete decompiler which never made it past a
beta version, though we include it here as it is still available
to use. The results from Mocha are not surprising as they
confirm that Mocha is no longer a viable decompiler for
the latest Java class files. Mocha fails to parse all programs
generated by the latest version of javac.
SourceAgain is the only commercial decompiler that per-
formed well in our tests. SourceAgain is able to perfectly
decompile four of our test programs including the Args
test program which is only decompiled correctly by JODE
and Dava. The product is no longer sold or supported and
is only available online to decompiler single class files.
SourceAgain is therefore obsolete.

SourceTec (Jasmine) a patch to Mocha, also fails to parse
all javac generated class files producing the same results as
Mocha.

No decompiler was able to decompile all test programs
with JODE decompiling the most programs correctly. JODE
only managed to decompile 5 programs correctly while
four (unmaintained) decompilers could not decompile any
of the test programs correctly. The top three javac oriented
decompilers were JODE, Jad and Java Decompiler whereas
the worst decompilers were the unmaintained commercial
decompilers - SourceTec, ClassCracker3 and Mocha. Some
decompilers failed simply because they could not parse the
latest class files or arbitrary class files.

Dava, unsurprisingly, was better at decompiling the ar-
bitrary bytecode test programs than the javac test pro-
grams. Dava is the second best decompiler based on our
effectiveness measures, but is the best arbitrary bytecode
decompiler. Dava performs similarly to jdec with javac
generated bytecode, both decompiling two of these correctly.
Overall Dava decompiles correctly twice the number of
programs that jdec decompiles, and one less than JODE.

Java Decompiler scored the highest using our effective-
ness measures, beating Jad and JODE by performing slightly
better at decompiling the arbitrary bytecode programs. JODE
was able to decompile two more programs correctly than
Java Decompiler and Jad though. JODE was the best de-
compiler in the original survey and is still one of the best
in our evaluation but Java Decompiler beats JODE with our
effectiveness measures. JODE performs similarly to Jad and
Java Decompiler with javac generated bytecode in our tests.

IV. CONCLUSION AND FUTURE WORK

Many of the companies producing commercial decompil-
ers have disappeared and their decompilers have been left
unmaintained. Even some free and/or open-source decom-
pilers such as Jad and JODE have been unmaintained for
some time. Jad is not open-source so the project cannot be
taken up by others and the last major update was in 2001.

Decompilation has many uses in the real world, such as
the recovery of lost source code for a crucial application [7],
therefore if the quality of Java decompilers increased they
might be of more use commercially.

One of the most active decompiler projects is the open-
source Dava [14], [25]–[28] decompiler, part of the Soot
Optimisation Framework [29], which is a research project
carried out by the Sable Research Group at McGill Univer-
sity. Dava differs from other decompilers in that it aims to
decompile arbitrary bytecode whereas other decompilers rely
on known patterns produced by Java compilers (and this is
usually javac). Dava is better at decompiling arbitrary byte-
code whereas other decompilers are better at decompiling
javac generated bytecode.

A decompiler aimed at decompiling arbitrary bytecode,
like Dava, can be more useful in some instances than a



decompiler aimed at bytecode generated by a specific com-
piler. Java bytecode can be generated by tools other than a
Java decompiler and many decompilers are aimed at patterns
produced by Java decompilers and some specifically javac.
Knowing the patterns that a compiler will produce makes
decompilation of bytecode easier and it can sometimes be
just a matter of reversing those patterns.

Decompiling bytecode arbitrarily, i.e. not by inverting
known patterns produced by compilers, can be a disadvan-
tage in some cases, for example Dava could not correctly
decompile the trivial TryFinally test program. Other decom-
pilers could decompile this test program by finding a known
pattern produced by a compiler for try-finally blocks.

Though there is a lack of commercial Java decompilers
Java bytecode decompilation and decompilation in general
are fruitful research areas. One of the main areas for research
is type inference both in bytecode (e.g. [15], [28], [32])
and machine code (e.g. [33]). The task of type inference
in Java bytecode is simpler than that of machine code due
to the information contained within a Java class file - a Java
class file contains type information for fields and method
parameters and returns.

Type inference is an interesting problem in decompilation
and two of the best decompilers tested (Dava and JODE)
were both able to correctly type the variables in the type
inference test. Most other decompilers, which did not per-
form type inference, typed variables as Object and inserted a
typecast where necessary. The type inference problem is NP-
Hard in the worst case [34], however, if the type inference
algorithm is optimised for the common-case rather than the
worst case it is possible to perform type analysis efficiently
for most real-world code as worst-case scenarios are unlikely
[32].

All the decompilers tested had some problems decompil-
ing some of the tests. In terms of our effectiveness measures,
Dava, Jad, Java Decompiler and JODE were the four best
decompilers (excluding SourceAgain). Of these, JODE and
Java Decompiler are the best decompilers: JODE correctly
decompiles 5 out of the 10 test programs correctly and Java
Decompiler performs best using our effectiveness measures
but decompiles two less programs correctly. JODE is open-
source and is therefore open to further improvements but
is not currently maintained, while Java Decompiler is in
development and available free (but is not open-source).
Unfortunately Jad is unmaintained, and closed-source, so is
not guaranteed to work for future versions of Java class files.
The commercial decompiler SourceAgain performs well in
the effectiveness measures, but was only able to decompile 4
programs correctly - the same number as Dava. SourceAgain
performed similarly to Jad but is now obsolete and only
available as a web application which can decompile single
class files. Java Decompiler is a newer decompiler in active
development, which performs highest in our effectiveness
measures and correctly decompiles 3 out of 10 programs.

This decompiler performs best at javac generated bytecode
and may improve in the future even more as it is in
development.

Knowing the tool that generated a class file can be useful
in knowing which decompiler to use. If a class file was
generated by javac then a javac specific decompiler would
be more useful than an arbitrary decompiler such as Dava.
If the class file was generated by other means, or modified
by an obfuscator or optimiser, a javac specific decompiler
would most likely fail so an arbitrary decompiler would be
more useful in this case.

We have demonstrated the effectiveness of several Java
decompilers on a small set of test programs, each of which
were designed to test different problem areas in decom-
pilation. Such a small test set of programs may not be
representative of real-world Java programs and, in fact, some
problem areas tested may not be of high relevance in real-
world programs.

In terms of our evaluation, Dava, Java Decompiler and
JODE are the best decompilers, with Dava being the best
arbitrary bytecode decompiler. Dava faces some challenges
in decompilation of Java specific code while the other
decompilers have problems with arbitrary bytecode. Future
work will investigate the possibility of combining the desir-
able features of these to produce a single decompiler capable
of decompilation of both Java specific features (such as try-
finally blocks) and arbitrary bytecode.

REFERENCES

[1] W. Caudle, “On inverse of compil-
ing,” Sperry-UNIVAC, Apr. 1980. [Online].
Available: http://www.program-transformation.org/view/
Transform/OnInverseOfCompiling?skin=print.pattern

[2] T. Lindholm and F. Yellin, The Java(TM) Virtual Machine
Specification (2nd Edition). Prentice Hall PTR, Apr. 1999,
published: Paperback.

[3] A. Buckley, E. Rose, A. Coglio, B. S. Corporation,
I. Sun Microsystems, I. Tmax Soft, S. Technologies, and
E. AG, “Jsr 202: Javatm class file specification update,”
2006. [Online]. Available: http://jcp.org/en/jsr/detail?id=202

[4] J. Meyer, D. Reynaud, I. Kharon et al., “Jasmin,”
sourceforge.net, 2004. [Online]. Available: http://jasmin.
sourceforge.net/

[5] M. V. Emmerik, “Static single assignment for decompilation,”
PhD Thesis, The University of Queensland, 2007.

[6] C. Cifuentes, “Reverse compilation techniques,” PhD Thesis,
Queensland University of Technology, 1994. [Online].
Available: http://citeseer.ist.psu.edu/cifuentes94reverse.html

[7] M. V. Emmerik and T. Waddington, “Using a decompiler
for Real-World source recovery,” in WCRE ’04: Proceedings
of the 11th Working Conference on Reverse Engineering.
Washington, DC, USA: IEEE Computer Society, 2004, p.
2736.



[8] M. V. Emmerik, “Java decompiler tests,” 2003.
[Online]. Available: http://www.program-transformation.org/
Transform/JavaDecompilerTests

[9] M. Batchelder and L. J. Hendren, “Obfuscating java: the most
pain for the least gain,” in CC ’07: Proceedings of Compiler
Construction, 16th International Conference, 2007, pp. 96–
110.

[10] N. A. Naeem, M. Batchelder, and L. Hendren, “Metrics for
measuring the effectiveness of decompilers and obfuscators,”
in ICPC ’07: Proceedings of the 15th IEEE International
Conference on Program Comprehension. Washington, DC,
USA: IEEE Computer Society, 2007, p. 253258.

[11] M. H. Halstead, Elements of software science (Operating and
programming systems series). Elsevier, 1977, published:
Hardcover.

[12] Kearney, Sedlmeyer, Thompson, Gray, and Adler, “Software
complexity measurement,” Commun. ACM, vol. 29, no. 11,
p. 10441050, 1986.

[13] G. Nolan, Decompiling Java. APress, 2004.

[14] J. Miecznikowski and L. J. Hendren, “Decompiling java byte-
code: Problems, traps and pitfalls,” in CC ’02: Proceedings of
the 11th International Conference on Compiler Construction.
London, UK: Springer-Verlag, 2002, p. 111?127.

[15] T. B. Knoblock and J. Rehof, “Type elaboration and subtype
completion for java bytecode,” ACM Trans. Program. Lang.
Syst., vol. 23, no. 2, pp. 243–272, 2001.

[16] B. Fagin and M. Carlisle, “Connect Four(TM) game,
written in ada,” Department of Computer Science, 2005.
[Online]. Available: http://webdiis.unizar.es/asignaturas/EDA/
gnat/jgnat/connect four/test.html

[17] H. van Vliet, “Mocha, the java decompiler,” 1996. [Online].
Available: http://www.brouhaha.com/∼eric/computers/mocha.
html

[18] SourceTec Software Inc, “SourceTec (Jasmine),” http://www.
sothink.com/product/javadecompiler/index.htm, 1997.

[19] Ahpah Software, “SourceAgain,” http://www.ahpah.com/
cgi-bin/suid/∼pah/demo license.cgi, 2004.

[20] Mayon Software Research, “ClassCracker 3,” http://mayon.
actewagl.net.au/, 2005.

[21] P. Kouznetsov, “Jad - the fast java decompiler,”
http://www.kpdus.com/jad.html, Mar. 2006. [Online].
Available: http://www.kpdus.com/jad.html

[22] V. Grishchenko and J. Gyger, “JadClipse,” http://jadclipse.
sourceforge.net/wiki/index.php/Main Page, 2009.

[23] J. Hoenicke, “JODE,” http://jode.sourceforge.net/, 2004.

[24] K. Kumar, “JReversePro - java decompiler / disassembler,”
http://jreversepro.blogspot.com, 2005, JReversePro is a java
decompiler / disassembler written in Java.

[25] J. Miecznikowski, “New algorithms for a java decompiler
and their implementation in soot,” Masters Thesis, McGill
University, 2003.

[26] N. A. Naeem and L. Hendren, “Programmer-Friendly decom-
piled java,” in ICPC ’06: Proceedings of the 14th IEEE Inter-
national Conference onProgram Comprehension (ICPC’06).
IEEE Computer Society, 2006, p. 327—336.

[27] N. A. Naeem, “Programmer-Friendly decompiled java,”
Masters Thesis, 2007. [Online]. Available: http://www.sable.
mcgill.ca/publications/thesis/#nomairMastersThesis

[28] J. Miecznikowski and L. Hendren, “Decompiling java us-
ing staged encapsulation,” in WCRE ’01: Proceedings of
the Eighth Working Conference on Reverse Engineering
(WCRE’01). Washington, DC, USA: IEEE Computer So-
ciety, 2001, p. 368.

[29] R. Valle-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan, “Soot - a java bytecode optimization frame-
work,” in CASCON ’99: Proceedings of the 1999 conference
of the Centre for Advanced Studies on Collaborative research.
IBM Press, 1999, p. 13.

[30] S. Belur and K. Bettadapura, “Jdec: Java decompiler,” http:
//jdec.sourceforge.net/, 2008.

[31] E. Dupuy, “Java decompiler,” http://java.decompiler.free.fr/,
2008.

[32] B. Bellamy, P. Avgustinov, O. de Moor, and D. Sereni,
“Efficient local type inference,” SIGPLAN Not., vol. 43,
no. 10, pp. 475–492, 2008.

[33] A. Mycroft, “Type-Based decompilation (or program recon-
struction via type reconstruction),” in ESOP ’99: Proceedings
of the 8th European Symposium on Programming Languages
and Systems. London, UK: Springer-Verlag, 1999, p. 208223.

[34] E. Gagnon, L. J. Hendren, and G. Marceau, “Efficient
inference of static types for java bytecode,” in Static
Analysis Symposium, 2000, pp. 199–219. [Online]. Available:
www.sable.mcgill.ca/publications


