
A Survey Of Graph Based Software Watermarking
James Hamilton and Sebastian Danicic

Department of Computing
Goldsmiths, University of London

United Kingdom
james.hamilton@gold.ac.uk, s.danicic@gold.ac.uk

Abstract—Software watermarking involves embedding a
unique identifier within a piece of software, to discourage
software theft. The global revenue loss due to software piracy
was estimated to be more than $50 billion in 2008. We survey
the proposed software watermarking algorithms based on graph
encoding.

Graph based watermarking schemes, like other watermarking
schemes, can be divided into two groups: static and dynamic.
Static graph watermarks are embedding in a control-flow graph
within a program whereas dynamic graph watermarks are
embedding in a graph data-structure built at run-time.

We describe the proposed static and dynamic graph water-
marking schemes, highlighting strengths and weaknesses and
concluding with a proposal for future work with dynamic graph
watermarking.

Index Terms—software watermarking; program transforma-
tion;java; bytecode;

I. INTRODUCTION

Software theft, also known as software piracy, is the act of
copying a legitimate application and illegally distributing that
software, either free or for profit. Legal methods to protect
software producers such as copyright laws, patents and license
agreements [17] do not always dissuade people from stealing
software, especially in emerging markets where the price of
software is high and incomes are low. Ethical arguments, such
as fair compensation for producers, by software manufacturers,
law enforcement agencies and industry lobbyists also do little
to counter software piracy. The global revenue loss due to
software piracy was estimated to be more than $50 billion in
2008 [3].

Technical measures have been introduced to protect digital
media and software, due to the ease of copying computer files.
Some software protection techniques, of varying degrees of
success, can be used to protect intellectual property contained
within Java class-files. Java bytecode is higher level than
machine code and is relatively easy to decompile with only a
few problems to overcome [19].

Software watermarking involves embedding a unique iden-
tifier within a piece of software. It does not prevent theft but
instead discourages software thieves by providing a means to
identify the owner of a piece of software and/or the origin of
the stolen software [33]. The hidden watermark can be used,
at a later date, to prove ownership of stolen software. It is also
possible to embed a unique customer identifier in each copy
of the software distributed which allows the software company
to identify the individual that copied the software.

In this paper, we examine the currently proposed static and
dynamic graph watermarking schemes. Static graph water-
marks are embedding in a control-flow graph within a program
whereas dynamic graph watermarks are embedding in a graph
data-structure built at run-time. We report previous findings,
describe some recent additions and conclude by suggesting a
direction for future work.

II. SOFTWARE WATERMARKING

Software watermarks can be broadly divided into two cate-
gories: static and dynamic [10]. The former is embedded in the
data and/or code of the program, while the latter is embedded
in a data structure built at runtime.

A watermark is embedded into a computer program through
the use of an embedder; it can then be extracted by an
extractor or verified by a recogniser. The former extracts
the original watermark, while the latter merely confirms the
presence of a watermark [51]. A watermark recognition or
extraction algorithm may also be classified as blind, where the
original program and watermark is unavailable, or informed,
where the original program and/or watermark is available [50].

Watermarks should be resilient to semantics preserving
transformations and ideally it should be possible to recognise
a watermark from a partial program. Semantics preserving
transformations, by definition, result in programs which are
syntactically different from the original, but whose behaviour
is the same. The attacker can attempt, by performing such
transformations, to produce a semantically equivalent program
with the watermark removed [20]. Redundancy and recogni-
tion with a probability threshold may help with these problems
[32].

The runtime cost of a program with an embedded watermark
should not differ significantly from the original program but
some transformations applied by the watermark could have an
effect on size and execution time [35].

III. ENCODING WATERMARKS IN GRAPHS

Collberg et al. [13] describe several techniques for encoding
watermark integers in graph structures. The algorithms in this
paper rely on the fact that graph-generating code is difficult
to analyse due to aliasing effects [18] which, in general, is
known to be un-decidable [40].

An ideal class of watermarking graph should have the
following properties [16]:



(a) (b) (c) (d)

Fig. 1: Enumerations of a directed graph with 4 indistinguish-
able vertices.

• ability to efficiently encode a watermark integer; and be
efficiently decodable to a watermark integer

• a root node from which all other nodes are reachable
• a high data-rate
• a low outdegree to resemble common data structures such

as lists and trees
• error correcting properties to allow detection after trans-

formation attacks
• tamper-proofing abilities
• have some computationally feasible algorithms for graph

isomorphism, for use during recognition

A. Graph Enumeration

The family of graph encoding is based on a branch of graph
theory known as graphical enumerations [21]. An integer
watermark n is encoded as the nth enumeration of a given
graph.

1) Directed Parent-Pointer Trees: This family of graphs
contains a single edge between a vertex and it’s parent. For
example, there are 4 possible enumerations of DPPTs having
four indistinguishable vertices [28], as shown in figure 1. We
choose the nth enumerated graph to embed the watermark
number n.

how is it
ordered?

Implementing a parent-pointer tree data-structure is space
efficient because each node has just one pointer field refer-
encing it’s parent. However, the data-structure is fragile and
an adversary could add a single node or edge to distort the
watermark.

2) Planted Planar Cubic Trees: Planted planar cubic trees
(PPCT) are binary trees where every interior vertex, except
the root, has two children (see figure 2). These are easily
enumerated by using a Catalan recurrence [4, 29]. Figure 4
shows PPCT enumerations with 1 to 4 leaves; the Catalan
number c(n) gives the number of unique trees for each n. An
integer is encoded as one of the trees, for example, a 0 could
be encoded as any of the trees in the first column.

The Catalan number is given by the formula:

c(n) =
1

n+ 1

(
2n

n

)
=

(2n)!

(n+ 1)!n!
for n ≥ 0 (1)

Fig. 2: Planted Planar Cubic Tree

Fig. 3: Enhanced Planted Planar Cubic Tree, with leaf self-
pointers (dotted) and an outer cycle (dashed).

PPCTs can be made more resilient to attacks by a) marking
each leaf with a self-pointer, and b) creating an outer cycle
from the root to itself through all the leaves [9] (see figure 3).
This allows single edge and node insertions to be detected;
however, multiple changes cannot be detected or corrected.
The PPCT graphs have a lower bit-rate than other graph
families but are more resilient to attacks.

B. Radix Graphs

Radix graphs add an extra pointer field in each vertex of
a circular linked list of length k to encode a base-k digit. It
is possible to encode watermark digits where a self-pointer
represents 0, a pointer to the next node 1, and so on. Figure
5 shows the radix-5 expansion of 36510 (24305) encoded in a
linked list structure.

These graphs give the highest data-rate for encoding water-
marks however they are fragile as the watermark could easily
be distorted. We can add redundancy to these watermarks by
restricting the indegree to two and outdegree to two and using
a permutation graph [13].

Several papers [5, 39, 48, 47, 26, 49] describe a technique
which combines radix graphs with the error-correcting prop-
erties of PPCTs by converting a radix graph into a PPCT-like
structure.

C. Permutation Graphs

Permutation based graphs (as defined by Collberg et al.
[13]) use the same basic singly linked circular list structure

different
from
wikipedia
& Spinrad
[41]

as the radix graphs but have error-correcting properties. In
this encoding scheme a permutation P = {p1, p2, . . . , pn} is



0× 54 0× 50

3× 51

4× 52

2× 53

Fig. 5: Radix-5 expansion of the watermark 365. The spine is black and edges representing radix-k are dotted.

C
(0
)
=

1

0

C
(1
)
=

1

0

C
(2
)
=

2

0 1

C
(3
)
=

5

0 1 2 3 4

Fig. 4: Enumerations of PPCTs with 1 to 4 leaves, showing
the index below.

derived from the watermark integer n; the permutation is then
encoded in the graph by adding edges between vertices i and
pi.

Collberg and Nagra [9] give algorithms for encoding and
decoding an integer as a permutation, shown here as algorithm
1 and 2. For example, the integer 9710 is encoded as the
permutation {3, 1, 0, 2, 4} according to algorithm 1. We then
encode this in a graph as shown in figure 6.

If an adversary changes one of the non-spine pointers to
point to a different vertex we will discover an error because the
permutation graph encodes a unique permutation - each vertex
must have indegree two. However, if the adversary swaps two
pointers we will lose the watermark.

Algorithm 1 int2perm [9]

Input: integer V , length of permutation len
Output: permutation encoding of V
perm = (0, 1, 2, . . . , len− 1)
for r = 2; r < len; r ++ do

swap perm[r − 1] and perm[V mod r]
V = V ÷ r

end for
return perm

D. Reducible Permutation Graphs

Reducible permutation graphs (RPG) [45, 44] are very sim-
ilar to permutation graphs but they closely resemble control-
flow graphs as they are reducible-flow graphs [24, 23].

Definition 1. Reducible flow graph [1]: A flow graph G is
reducible if and only if we can partition the edges into two
disjoint groups, often called forward edges and back edges,
with the following two properties:

1) The forward edges from an acyclic graph in which every
node can be reached from the intial node of G.

2) The back edges consist only of edges whose heads
dominate their tails



10 32 4

Fig. 6: Permutation graph encoding the integer 9710 using algorithm 1 to generate the permutation {3, 1, 0, 2, 4}.

Algorithm 2 perm2int [9]

Input: a permutation perm
Output: encoded integer V
V = 0
f = 0
for r = length(perm); r ≥ 2; r −− do

for s = 0; s < r; s++ do
if perm[s] == r − 1 then
f = s
break

end if
end for
swap perm[r − 1] and perm[f ]
V = f + r × V

end for
return V

The reducibility of this family of graphs means that they
resemble control-flow graphs constructed from programming
constructs such as if, while etc. [9].

RPGs, like CFGs, contain a unique entry node and a unique
exit node, a preamble which contains zero or more nodes
from which all other nodes can be reached and a body which
encodes a watermarking using a self-inverting permutation [6].

Definition 2. Inverse permutation [6]: an inverse permutation
of {p0, p1, . . . , pn} is the permutation {q0, q1, . . . , qn} where
qpi = pqi = i.hmm...

Definition 3. Self-inverting permutation [6]: a permutation
that is it’s own inverse, i.e. Ppi

= i.

For example, the following permutation Q =
{0, 5, 2, 10, 4, 1, 9, 7, 8, 6, 3} is a self-inverting permutation of
P = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

This family of graphs is resistant to edge-flip attacks, where
an attacker inverts the condition of conditional jumps in a
program.

draw
graph
example

IV. STATIC GRAPH WATERMARKING

Venkatesan et al. [45] proposed the first static graph wa-
termarking scheme, Graph Theoretic Watermarking (GTW ),
which encodes a value in the topology of a program’s control-
flow graph [1]. The idea was later patented by Venkatesan and
Vazirani [44] for Microsoft. The basic concept is to encode a
watermark value in a reducible permutation graph and convert
it into a control flow graph; it is then merged with the program
control flow graph by adding control flow edges between the
two.

Figure 7(a) shows the control flow graph for the Java
method in listing 1 and figure 7(b) shows our watermark graph
- this graph encodes our watermark (it’s not important, for this
example, what the watermark is; just that 7(b) encodes our
watermark).

The watermark graph in figure 7(b) is also the control flow
graph for the Java method in listing 2 - we embed our wa-
termark graph in a program by converting a graph watermark
into a control flow graph using programming constructs from
the programming language we are using.

The watermark control flow graph can be integrated with
the original program control flow graph as shown in figure
7(c) and code listing 3.

The algorithm adds bogus control flow edges between
random pairs of vertices in the program CFG and watermark
CFG in order to protect against static analysis attacks looking
for sparse-cuts [2] in the control-flow graph. A sparse-cut
would indicate a possible joining point of the original program
CFG and the watermark CFG where the attacker could split the
program with as few edges broken as possible. For example,
we could insert a call to the sum, or any other method in
the original program, in the watermark method. The GTW
algorithm also inserts bogus method calls in between parts of
the original program so that the location of bogus calls cannot
be used to point out the location of the watermark.

In order to recognise a GTW we must know which basic
blocks, from the program’s CFG, are part of the watermark
graph; we must therefore mark the watermark basic blocks in



B0

B1

B3B2

B5B4

(a) P

W3W2

W1

W0

(b) W

B1

B0

B3B2

W3W2

W1

W0

B5B4

(c) PW

Fig. 7: Graph theoretic watermarking

Listing 1: Example Java Method - Sum

public static void sum(int[] numbers) {
int total = 0;

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero

:(");
}else{

System.out.println("total is " + total);
}

}

Listing 2: Example Static Graph Watermark Method - Sum

public static boolean wm(int i) {
if(i < 0)

return true;
else

return false;
}

some way in order to identify them. We could, for example,
re-order instructions such that they are in lexicographic order,
or insert bogus instructions to identify a watermark basic block
[9]. However, these techniques are not resilient to semantics-
preserving transformations and an attacker could remove the
marks so that we cannot mark our watermark blocks.

Collberg et al. [7] implemented a version GTWSM of
GTW in Sandmark [8] in order to evaluate the algorithm.
They measured the size and time overhead of watermarking
and evaluated the algorithm against a variety of attacks.
They also introduce two methods (Partial Sum splitting and

Listing 3: Example Static Graph Watermark Java Method - Sum

public static void sum(int[] numbers) {
int total = 0;
wm(total);
for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero

:(");
}else{
System.out.println("total is " + total);

}
}

public static boolean wm(int i) {
if(i < 0)
return true;

else
return false;

}

Generalised Chinese Remainder Theorem [30] splitting) for
splitting a watermark integer into redundant pieces so that
a large integer can be stored in several smaller CFGs. They
found that stealth is a big problem; for example, the basic
blocks of the generated watermark method consisted of 20%
arithmetic instructions compared to just 1% for standard Java
methods [14]. Watermarks of up to 150 bits increased program
size by between 40% and 75%, while performance decreased
by between 0% and 36% [7].

V. DYNAMIC GRAPH WATERMARKING

Collberg and Thomborson [10] proposed the first dynamic
graph based watermarking scheme CT to overcome prob-
lems with static watermarking schemes; most notably, static
watermarks are highly fragile and therefore susceptible to
semantics-preserving transformation attacks [20].



Listing 4: Example Dynamic Graph Watermarked Java Method - Sum

class Node { public List<Node> children = new
ArrayList<Node>(); }

public static void sum(int[] numbers) {
int total = 0;

if(numbers.length > 5) {
Node root = new Node();
Node n1 = new Node();
root.children.add(n1);
Node n2 = new Node();
Node n3 = new Node();
n1.children.add(n2);
n1.children.add(n3);

}

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero

:(");
}else{

System.out.println("total is " + total);
}

}

Dynamic graph watermarking schemes are similar to static
graph watermarking except the graph structures are built at
run-time. CT can use any of the previously described graph
encoding schemes to store the watermark.

Figure 4 demonstrates how we could, trivially, embed our
example watermark graph from figure 7(b) dynamically into
the example Java program from listing 1. We only execute the
watermark code when the numbers array is longer than 5
- this serves as our secret input. We would inspect the Java
heap to retrieve our watermark when the program is executed
with the secret input.

The first implementation [38] of the CT algorithm CTJW ,
implemented in a system called JavaWizz [37], was for Java
bytecode using PPCT graphs to encode the watermark integer.
A class is chosen from the program to be watermarked and
converted into a node class by adding additional fields which
contain references to other nodes.

The graph building code is including in the program by
sub-classing a class and putting the graph building code in
it’s constructor. For example, in listing 5 the class A1 is a
sub-class of A; to build the graph an execution of new A()
only has to be replaced by new A1().

Palsberg et al. [38] discuss a simple implementation which
only resists attacks against dead-code removal; they suggest
that other software protection techniques are applied after
the program has been watermarked. Dependencies are added
between the watermark generating code and the original pro-
gram by replacing a statement S with a statement of the form
if(x 6= y) S where x and y are distinct nodes in the watermark
graph.

Listing 5: CT watermark implementation.

class A {

A() {
....

}
....

}

class A1 extends A {

A1() {
super();
// graph building
// code goes here

}

}

In order to retrieve the watermark, the watermarked program
is executed and the Java heap is accessed by dumping an image
using the -Xhprof heap profiling JVM option [36].

The following steps are performed to retrieve the water-
mark:

1) Extracting potential node classes
2) Exracting potential node objects
3) Determining potential edges
4) Searching for the watermark graph
In general, searching for the graph would be an NP-

complete problem however we know that the graph is a PPCT
graph of a certain size and can prune away unnecessary nodes.
Palsberg et al. [38] evaluated their implementation and found
that, although it is possibly to retrieve a watermark, it is time-
consuming — taking from 0.6 minutes up to 8.9 minutes on
their set of test programs. It was shown that the CT algorithm
is a good watermarking scheme because it is stealthy and
resilient to semantics-preserving transformation attacks but it
must be combined with other software protection techniques
such as obfuscation [11] and tamper-proofing [15].

Collberg and Thomborson [16] implemented a version of
the CT algorithm, CTSM , in Sandmark [8] and compared it
to JavaWiz [37]. The CTSM implementation differs from the
JavaWiz in the following ways:

• CTSM requires a key to encode and decode the water-
mark, requiring user annotation of the program to be
watermarked

• CTSM can encode arbitrary strings whereas CTJW re-
quires an integer watermark

• CTJW uses PPCTs to encode the watermark, whereas
CTSM offers the choice of Radix, PPCT, Permutation
or Reducible Permutation graphs; also offering a cycled
graph option to protect against node-splitting attacks.

• CTJW ’s graph building code is concentrated in one lo-
cation whereas CTSM embeds code fragments at sereval
user-specified locations

• CTJW uses an existing class for graph nodes whereas
CTSW generates its own



• CTJW uses the heap profiling option of the JVM whereas
CTSM uses the Java Debug Inteferace (JDI) API [42]

The CTSW algorithm embedding algorithm consists of the
following steps:

Annotation
In this first step the programmer must insert calls to a
method mark() which indicates to the watermark-
ing system locations in which graph building code
can be inserted. This manual annotation step allows
a programmer to carefully choose the best locations
for code insertion, maximising the stealthiness of the
embedded watermark.

Tracing
After the code has been annotated the program is
run with a secret input during which one or more
annotation points will be encountered. Some of these
encountered locations are used to store the graph
building code.

Embedding
The watermark is encoded in a graph structure
(strings watermarks are first converted to integers)
and is converted into Java bytecode that builds the
graph. The graph node class is generated from a
similar class already in the program, or if no suitable
class is found, classes from the Java library, such as
LinkedList could be used. The graph is parti-
tioned into several, equal sized, sub-graphs so that
the code is more stealthy and the code is inserted at
the marked locations discovered in the tracing step.

During extraction the program is run with the secret input;
this will invoke the graph building code at the locations marked
by the programmer. The graph structure will be on the Java
heap and the Java debugging interface is used to retrieve it.
The JDI is used to add breakpoints to every constructor in
the program to build a circular linked buffer of the last 1000
objects allocated. The list is then searched, in reverse, for the
watermark graph.

Collberg and Thomborson [16] evaluate CTSM and con-
clude that it is efficient and resilient to semantics-preserving
transformations. The greatest vulnerability is it’s limited
stealthiness and it is suggest that future work investigates com-
bining a locally stealthy but not steganographically stealthy
technique, such as describe by Nagra and Thomborson [34],
with the CT algorithm would be helpful.

VI. ATTACKS AGAINST GRAPH WATERMARKS

Collberg et al. [16] describe 4 types of attacks against
dynamic graph watermarking schemes:

1) adding extra graph edges
2) adding extra nodes to the graph
3) renaming and re-ordering instance variables
4) splitting nodes into several linked parts
However, an adversary will probably not know the location

of the watermark in a large program and as such would have
to apply transformations across the program resulting in a

large performance decrease. The use of RPG or PPCT graphs
prevent renaming and re-ordering attacks because these graph
encodings do not rely on the order of the nodes.

The biggest problem is the addition of bogus nodes to
a graph for which tamper-proofing techniques are required.
Collberg et al. [16] suggest the use of Java reflection may help.
However, they did not implement this because they conclude
that the code would be unstealthy as this kind of code is
unusual in most programs.

Luo et al. [31] describe an algorithm based on CT using
the Chinese Remainder Theorem [30] to split the watermark .

Is this just
plagiarised
from
collberg?

VII. TAMPER-PROOFING BY CONSTANT ENCODING

He [22], and later Thomborson et al. [43], developed
a tamper-proofing technique for dynamic graph watermark
called constant encoding. Constant encoding encodes some of
the constants in a program into a tree structure similar to the
watermark and decodes them at run-time. An attacker cannot
distinguish between the watermark graph and the constant
encoding graphs so they cannot change any graph structure
as they may introduce bugs into the program.

Fig. 8: A possible graph encoding of the constant 0.

For example, assuming that the constant 0 can be encoded
as the graph in figure 8, we can replace the constant 0 in the
example Java program from listing 1 with a method call which
decodes the graph back into the constant 0, as shown in listing
6.

Listing 6: Example Constant Encoding Java Method - Sum

class Node { public List<Node> children = new
ArrayList<Node>(); }

public static void sum(int[] numbers) {

Node cg = buildConstantGraph();

int total = decode(cg);

for(int i = 0; i < numbers.length; i++) {
total += numbers[i];

}

if(total < 0) {
System.out.println("total is less than zero

:(");
}else{
System.out.println("total is " + total);

}
}

An attacker that manipulates the constant graph will change
the encoding; so the decode function will return a different
number and the program will be semantically incorrect.

A weakness of this system is that an attacker may be able
to discover that certain program functions always return the



same value, for every execution. He [22] suggests introducing
dependencies, to make the code harder to analyse, by pro-
viding an input variable to the decoding function. A further
suggestion, for future work, is to change the constant tree at
runtime making the code harder to analyse.

Jian-qi et al. [25] propose using the constant encoding
functions within the parameters of opaque predicates Collberg
et al. [12] so that if an attacker manipulates a constant graph
control will pass to the wrong clause of an if statement using
the opaque predicate.

Thomborson et al. [43] combine the watermarking and
tamper-proofing techniques further by using sub-graphs of
the watermark graph to encode constants, rather than sep-
arate graphs. Thomborson et al. [43] also formally define
the problem of tamper-proofing and show that commonly
occurring constants in computer programs can be replaced
automatically and that a long series of dynamic analyses would
be required to remove the watermark. However, it is not clear
if their constant encoding technique is resilient against pattern-
matching attacks – a question which is left for future work.

Khiyal et al. [27] suggest splitting constants so that large
constants can be encoded in small trees. They evaluated the
constant encoding technique by comparing watermarked and
tamper-proofed programs for efficiency, size and resilience.
They found that the size of a program does increase when
tamper-proofed and the execution time is slower; however, the
tamper-proofing technique should be used with obfuscation to
further protect a tamper-proofed program.

VIII. CONCLUSION

We have presented a survey of software watermarking
schemes based on graph encoding using both static and
dynamic embedding techniques. Static techniques, as always,
are highly susceptible to semantics preserving transformation
attacks and are therefore easily removed by an adversary.

Dynamic graph watermarking, however, is resilient to most
semantics-preserving transformations if the right graph encod-
ing is chosen. However, a choice between variable degrees
of high stealth, resilience and bit-rate has to be made, as no
algorithm has been developed which combines the best of all
these properties.

Further research should continue into dnyamic graph wa-
termarking, especially on improving the CT algorithm from
attacks. We intend to investigate the use of program slicing
[46] to attack dynamic watermarks and improve resilience to
subtractive attacks.

REFERENCES

[1] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D
Ullman. Compilers: Principles, Techniques, and Tools.
Addison Wesley, 2nd edition, August 2006. ISBN
0321486811.

[2] Sanjeev Arora, Satish Rao, and Umesh Vazirani. Ex-
pander flows, geometric embeddings and graph parti-
tioning. In Proceedings of the thirty-sixth annual ACM

symposium on Theory of computing, pages 222–231,
Chicago, IL, USA, 2004. ACM. ISBN 1-58113-852-0.

[3] Business Software Alliance. Sixth annual BSA and
IDC global software piracy study. Technical Report 6,
Business Software Alliance, 2008.

[4] Eugène Catalan. Note extraite d’une lettre adressée à
l’éditeur. Journal för die reine und angewandte Mathe-
matik, 27:192, 1844.

[5] XiaoJiang Chen, DingYi Fang, JingBo Shen, Feng Chen,
WenBo Wang, and Lu He. A dynamic graph watermark
scheme of tamper resistance. In Proceedings of the 2009
Fifth International Conference on Information Assurance
and Security - Volume 01, pages 3–6. IEEE Computer
Society, 2009. ISBN 978-0-7695-3744-3.

[6] Maria Chroni and Stavros D. Nikolopoulos. Encoding
watermark integers as self-inverting permutations. In
Proceedings of the 11th International Conference on
Computer Systems and Technologies and Workshop for
PhD Students in Computing on International Conference
on Computer Systems and Technologies, pages 125–130,
Sofia, Bulgaria, 2010. ACM. ISBN 978-1-4503-0243-2.

[7] C. Collberg, A. Huntwork, E. Carter, and G. Townsend.
Graph theoretic software watermarks: Implementation,
analysis, and attacks. In Workshop on Information
Hiding, 2004.

[8] Christian Collberg. Sandmark, August 2004. URL http:
//www.cs.arizona.edu/sandmark/.

[9] Christian Collberg and Jasvir Nagra. Surreptitious Soft-
ware: Obfuscation, Watermarking, and Tamperproofing
for Software Protection. Addison-Wesley Professional,
2009. ISBN 0321549252, 9780321549259.

[10] Christian Collberg and Clark Thomborson. Software
watermarking: Models and dynamic embeddings. In
Principles of Programming Languages 1999, POPL’99,
January 1999.

[11] Christian Collberg, Clark Thomborson, and Douglas
Low. A taxonomy of obfuscating transformations. Tech-
nical Report 148, July 1997.

[12] Christian Collberg, Clark Thomborson, and Douglas
Low. Manufacturing cheap, resilient, and stealthy opaque
constructs. In Principles of Programming Languages
1998, POPL’98, January 1998.

[13] Christian Collberg, Stephen Kobourov, Edward Carter,
and Clark Thomborson. Error-Correcting graphs for
software watermarking. In Proceedings of the 29th
Workshop on Graph Theoretic Concepts in Computer
Science, pages 156–167, 2003.

[14] Christian Collberg, Andrew Huntwork, Edward Carter,
Gregg Townsend, and Michael Stepp. More on graph
theoretic software watermarks: Implementation, analysis,
and attacks. Inf. Softw. Technol., 51(1):56–67, 2009.

[15] Christian S. Collberg and Clark Thomborson. Water-
marking, Tamper-Proofing, and obfuscation - tools for
software protection. In IEEE Transactions on Software
Engineering, volume 28, page 735746, August 2002.

[16] Christian S. Collberg, Clark Thomborson, and Gregg M.

http://www.cs.arizona.edu/sandmark/
http://www.cs.arizona.edu/sandmark/


Townsend. Dynamic graph-based software fingerprinting.
ACM Trans. Program. Lang. Syst., 29(6):35, 2007.

[17] Gareth Cronin. A taxonomy of methods for software
piracy prevention. Technical report, Department of Com-
puter Science, University of Auckland, New Zealand,
2002.

[18] Rakesh Ghiya and Laurie J. Hendren. Is it a tree, a
DAG, or a cyclic graph? a shape analysis for heap-
directed pointers in c. In Proceedings of the 23rd ACM
SIGPLAN-SIGACT symposium on Principles of pro-
gramming languages, pages 1–15, St. Petersburg Beach,
Florida, United States, 1996. ACM. ISBN 0-89791-769-
3.

[19] James Hamilton and Sebastian Danicic. An evaluation
of current java bytecode decompilers. In Ninth IEEE
International Workshop on Source Code Analysis and
Manipulation, volume 0, pages 129–136, Edmonton,
Alberta, Canada, 2009. IEEE Computer Society. doi:
10.1109/SCAM.2009.24.

[20] James Hamilton and Sebastian Danicic. An evaluation
of static java bytecode watermarking. In Proceedings
of the International Conference on Computer Science
and Applications (ICCSA’10), The World Congress on
Engineering and Computer Science (WCECS’10), San
Francisco, October 2010. ISBN 978-988-17012-0-6. To
appear.

[21] Frank Harary and Edgar M Palmer. Graphical Enu-
meration. Academic Press, New York,, 1973. ISBN
0123242452.

[22] Yong He. Tamperproofing a Software Watermark by
Encoding Constants. Masters thesis, University of Auck-
land, June 2002.

[23] M. S. Hecht and J. D. Ullman. Characterizations of
reducible flow graphs. J. ACM, 21(3):367–375, 1974.

[24] Matthew S. Hecht and Jeffrey D. Ullman. Flow graph
reducibility. In Proceedings of the fourth annual ACM
symposium on Theory of computing, pages 238–250,
Denver, Colorado, United States, 1972. ACM.

[25] Zhu Jian-qi, Wang Ai-min, and Liu Yan-heng. Tamper-
proofing software watermarking scheme based on con-
stant encoding. Education Technology and Computer
Science, International Workshop on, 1:129–132, 2010.
doi: 10.1109/ETCS.2010.429.

[26] Zhu Jianqi, Liu YanHeng, and Yin KeXin. A novel dy-
namic graph software watermark scheme. In Proceedings
of the 2009 First International Workshop on Education
Technology and Computer Science - Volume 03, pages
775–780. IEEE Computer Society, 2009. ISBN 978-0-
7695-3557-9.

[27] Malik Sikandar Hayat Khiyal, Aihab Khan, Sehrish Am-
jad, and M. Shahid Khalil. Evaluating effectiveness of
tamper proofing on dynamic graph software watermarks.
CoRR, abs/1001.1974, 2010.

[28] Donald E. Knuth. The Art of Computer Programming,
Volume 1 (3rd ed.): Fundamental Algorithms, volume 1.
Addison Wesley Longman Publishing Co., Inc., 3 edition,

1997. ISBN 0-201-89683-4.
[29] Thomas Koshy. Catalan Numbers with Applications.

Oxford University Press, 2008. ISBN 9780195334548.
[30] Lay Lam. Fleeting footsteps: tracing the conception

of arithmetic and algebra in ancient China. World
Scientific, Singapore, River Edge NJ, rev. ed. edition,
2004. ISBN 9789812386960. English translation of
”The Mathematical Classic” by Sun Zi.

[31] Yang-Xia Luo, Jian-Hua Cheng, and Ding-Yi Fang. Dy-
namic graph watermark algorithm based on the threshold
scheme. In Proceedings of the 2008 International Sym-
posium on Information Science and Engieering - Volume
02, pages 689–693. IEEE Computer Society, 2008. ISBN
978-0-7695-3494-7.

[32] Anshuman Mishra, Rajeev Kumar, and P. P. Chakrabarti.
A method-based Whole-Program watermarking scheme
for java class files. 2008.

[33] Ginger Myles. Using software watermarking to discour-
age piracy. Crossroads - The ACM Student Magazine,
2004. URL http://www.acm.org/crossroads/xrds10-3/
watermarking.html.

[34] Jasvir Nagra and Clark Thomborson. Threading software
watermarks. In Jessica J. Fridrich, editor, Information
Hiding, volume 3200 of Lecture Notes in Computer
Science, pages 208–223. Springer, 2004. ISBN 3-540-
24207-4.

[35] Jasvir Nagra, Clark Thomborson, and Christian Collberg.
A functional taxonomy for software watermarking. In
Michael J. Oudshoorn, editor, Aust. Comput. Sci. Com-
mun., pages 177–186, Melbourne, Australia, 2002. ACS.

[36] Kelly O’Hair. HPROF: a Heap/CPU profiling tool
in J2SE 5.0. Sun Developer Network, Developer
Technical Articles & Tips, November 2004. URL
http://java.sun.com/developer/technicalArticles/
Programming/HPROF.html.

[37] Jens Palsberg and Di Ma. Javawiz, 2000. URL
http://www.cs.purdue.edu/homes/madi/wm/. No longer
available.

[38] Jens Palsberg, S. Krishnaswamy, Minseok Kwon, D. Ma,
Qiuyun Shao, and Y. Zhang. Experience with software
watermarking. In ACSAC, pages 308–316, 2000.

[39] Zhou Ping, Chen Xi, and Yang Xu-Guang. The software
watermarking for tamper resistant radix dynamic graph
coding. Inform. Technol. J., 9:1236–1240, June 2010.
doi: 10.3923/itj.2010.1236.1240.

[40] G. Ramalingam. The undecidability of aliasing. ACM
Trans. Program. Lang. Syst., 16(5):1467–1471, 1994.

[41] Jeremy Spinrad. Efficient graph representations. Num-
ber 19 in Fields Institute Monographs. American
Mathematical Society, Providence R.I., 2003. ISBN
9780821828151.

[42] Sun Microsystems, Inc. Java debug interface,
2005. URL http://java.sun.com/j2se/1.5.0/docs/guide/
jpda/jdi/index.html.

[43] Clark Thomborson, Jasvir Nagra, Ram Somaraju, and
Charles He. Tamper-proofing software watermarks. In

http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://www.acm.org/crossroads/xrds10-3/watermarking.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://java.sun.com/developer/technicalArticles/Programming/HPROF.html
http://www.cs.purdue.edu/homes/madi/wm/
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/jpda/jdi/index.html


ACSW Frontiers ’04: Proceedings of the second work-
shop on Australasian information security, Data Mining
and Web Intelligence, and Software Internationalisation,
page 2736, Darlinghurst, Australia, Australia, 2004. Aus-
tralian Computer Society, Inc.

[44] Ramarathnam Venkatesan and Vijay Vazirani. Technique
for producing through watermarking highly tamper-
resistant executable code and resulting watermarked code
so formed, May 2006. Microsoft Corporation, US Patent:
7051208.

[45] Ramarathnam Venkatesan, Vijay Vazirani, and Saurabh
Sinha. A graph theoretic approach to software wa-
termarking. In Proceedings of the 4th International
Workshop on Information Hiding, 2001.

[46] Mark Weiser. Program slicing. In ICSE ’81: Proceedings
of the 5th international conference on Software engi-
neering, page 439449, Piscataway, NJ, USA, 1981. IEEE
Press. ISBN 0-89791-146-6.

[47] Wang Yong and Yang Yixian. A software watermark
database scheme based on PPCT. In CIHW2004, 2004.

[48] J. Zhu, Y. Liu, and K. Yin. A novel planar IPPCT
tree structure and characteristics analysis. Journal of
Software, 5(3):344, 2010.

[49] Jianqi Zhu, Kexin Yin, and Yanheng Liu. A novel DGW
scheme based on 2D PPCT and permutation. Multime-
dia Information Networking and Security, International
Conference on, 2:109–113, 2009. doi: 10.1109/MINES.
2009.177.

[50] William Zhu. Informed recognition in software water-
marking. In Proceedings of the 2007 Pacific Asia con-
ference on Intelligence and security informatics, pages
257–261, Chengdu, China, 2007. Springer-Verlag. ISBN
978-3-540-71548-1.

[51] William Feng Zhu. Concepts and Techniques in Soft-
ware Watermarking and Obfuscation. PhD thesis, The
University of Auckland, 2007.


	Introduction
	Software Watermarking
	Encoding Watermarks in Graphs
	Graph Enumeration
	Directed Parent-Pointer Trees
	Planted Planar Cubic Trees

	Radix Graphs
	Permutation Graphs
	Reducible Permutation Graphs

	Static Graph Watermarking
	Dynamic Graph Watermarking
	Attacks against graph watermarks
	Tamper-proofing by Constant Encoding
	Conclusion

